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Abstract

Cardinal polysplines of orderp on annuli are functions inC2p−2 (Rn\ {0}) which are piecewise poly-

harmonic of orderp such that�p−1S may have discontinuities on spheres inRn, centered at the origin and
having radii of the formej , j ∈ Z. The main result is an interpolation theorem for cardinal polysplines
where the data are given by sufficiently smooth functions on the spheres of radiusej and center 0 obeying
a certain growth condition in|j |. This result can be considered as an analogue of the famous interpolation
theorem of Schoenberg for cardinal splines.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Polysplines have been introduced by the first author as a multivariate analog of splines in
one variable, see e.g.[9]. In the monograph [10] applications of polysplines to Multiresolution
Analysis and Wavelet Analysis in the spirit of the work of Chui (see [5]) have been given. In this
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paper an interpolation result for cardinal polysplines on annuli (defined below) will be presented
which is motivated by the work of Schoenberg on cardinal spline interpolation, see[19].
Let p andn be natural numbers which are fixed throughout the paper and letRn be then-

dimensional Euclidean space andZ the set of all integers. As in [11–13] a functionS : Rn \
{0} → C is called acardinal polyspline of orderp on annuliif S is (2p − 2)-times continuously
differentiable and the restriction ofS to each open annulus

Aj := {x ∈ Rn : ej < |x| < ej+1}
is a polyharmonic function of orderp for j ∈ Z. Recall that a functionf defined on an open set
U in Rn ispolyharmonic of orderp if f is 2p-times continuously differentiable and�pf (x) = 0
for all x ∈ U where� is the Laplace operator and�p its pth iterate. It is well known that a
polyharmonic function is real analytic, hence infinitely differentiable. Hence after differentiating
a polyspline(2p − 2) times one may have discontinuities only on the spheres ejSn−1 = {ej y :
y ∈ Sn−1} with j ∈ Z, where

Sn−1 = {
y ∈ Rn : |y| = 1

}
is the unit sphere. So one may see the spheresejSn−1, j ∈ Z, as the multivariate analog of the
notion of the knotsj ∈ Z of a cardinal spline in the univariate case. Later it will become clear
why these radii are of the formej , j ∈ Z.
Schoenberg’s famous interpolation theorem for cardinal splines of odd degree says that for

data given on the knotsj ∈ Z of polynomial growth inj ∈ Z there exists a cardinal spline
interpolating the data which is of the same polynomial growth on the real line, see[19, p. 34]. The
aim of this paper is to present an analog of Schoenberg’s result for polysplines in the following
way: the data are given by functionsdj : ejSn−1 → C for j ∈ Z and we want to find a polyspline
S : Rn \ {0} → C which interpolates the data, i.e. that

S (y) = dj (y) for all y ∈ ejSn−1 andj ∈ Z (1)

and which has a similar growth as the data. Clearly we have to assume that the data functionsdj

are at least(2p − 2) times continuously differentiable. It turns out that the results are naturally
formulated in the context of the Sobolev spacesHs,1(Sn−1) for appropriates > 0, for details see
Section 6.
Ourmain result states the following: Let��0 be fixed; fors = sp,n = 2(p−1)+(n/2)−1 and

fj ∈ Hs,1(Sn−1), j ∈ Z, define functionsdj : ejSn−1 → C by dj (e
j�) = fj (�) for � ∈ Sn−1.

Assume that the data functions obey the growth condition∥∥fj

∥∥
s
�C| log ej |� for all j ∈ Z.

Then there exists a polysplineS of orderp interpolating the data functionsdj (i.e. (1)) and
satisfying the estimate

|S (x)| �D | log |x| |� for all x ∈ Rn.

In order to explain the construction ofS recall that a functionu : R → R is acardinalL-spline
(hereL stands for a linear differential operator with constant coefficients of degreeN + 1) if
u is (N − 1)-times continuously differentiable and if for everyl ∈ Z there exists an infinitely
differentiable functionfl : R → C with Lf = 0 such thatu (t) = fl (t) for all t ∈ (l, (l + 1)).
Theessenceof our construction involveswriting theLaplacian in spherical coordinates, expanding
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the polysplineS in a series of spherical harmonics, and, using the Micchelli theory of cardinal
L-splines, glueing the radial part together to getS; roughly speaking, this means that a polyspline
can be written in the form

S (x) =
∞∑
k=0

ak∑
l=1

Sk,l (log |x|) Yk,l

(
x

|x|
)

,

whereYk,l , k = 0, 1, . . . , l = 1, . . . , ak, is a basis for the set of all spherical harmonics and
the coefficientsSk,l areL-splines with respect to the linear differential operatorM�(k) defined in
(3). In order to achieve convergence of the sum one needs precise estimates for thefundamental
L-splinestaking into account their dependence on the parameterk.
The paper is structured as follows: Section 2 gives some basic facts about polysplines and

spherical harmonics in order to clarify the connection between polysplines andL-splines. In
Section 3 we give a brief account of the theory of Micchelli who has generalized in [16,17] the
results of Schoenberg on polynomial splines to the setting ofL-splines.
In Section 4 we discuss asymptotic estimates of the Euler–Frobenius function (defined in

Section 3) depending on the parameterk ∈ N0. In Section 5, we use these asymptotics to obtain
uniform estimates of fundamentalL-splines containing the parameterk. Section 6 contains our
main result. Uniqueness of the interpolation splines will be shown in the last section. In the
references [4] and [14] the reader will find recent developments of “interpolation polysplines on
strips”, where the interpolation data lie on parallel hyperplanes.

2. Spherical harmonics and polysplines

Eachx ∈ Rn will be written in spherical coordinatesx = r� with r�0 and� ∈ Sn−1 := {x ∈
Rn: |x| = 1}. Recall that a functionY :Sn−1 → C is aspherical harmonicof degreek ∈ N0 if
there exists a homogeneous harmonic polynomialP (x) of degreeksuch thatP(�) = Y (�) for all
� ∈ Sn−1. By ak we will denote the dimension of the vector spaceHk of all spherical harmonics
of degree exactlyk. By Yk,l(�), l = 1, . . . , ak we will denote an orthonormal basis of the space
Hk endowed with the scalar product∫

Sn−1
f (�)g(�) d�.

For the reader not familiar with spherical harmonics, it might be useful to consider the two-
dimensional case: identifyS1 with [0, 2�) and choose as a basisY0 = 1√

2�
and

Yk,1 (t) = 1√
�
coskt andYk,2 (t) = 1√

�
sin kt.

For a detailed account we refer to[23] or [2].
Let R1 < R2 be positive real numbers and let(R1, R2) be the open interval{r ∈ R : R1 <

r < R2}. Assume thatu : (R1, R2) → C be infinitely differentiable andYk ∈ Hk. Then it is well
known (see e.g. [10, p. 152]) that�(u(r)Yk(�)) = Yk(�)L(k)u (r) where

L(k) = d2

dr2
+ n − 1

r

d

dr
− k (k + n − 2)

r2
. (2)

By iteration we have�pu = Yk(�) · [L(k)]pu(r). Thus the functionu(r, �) = u(r)Yk(�) is
polyharmonic of orderp if and only if [L(k)]pu(r) = 0 for all r ∈ (R1, R2).



92 O. Kounchev, H. Render / Journal of Approximation Theory 137 (2005) 89–107

Let us put for convenience

�+ (k) := {k, k + 2, . . . , k + 2p − 2} ,
�− (k) := {−k − n + 2,−k − n + 4, . . . ,−k − n + 2p} .

The space of solutions of the equationLp

(k)f (r) = 0 which areC∞ for r > 0 is generated

by a simple basis: forj ∈ �+ (k) ∪ �− (k) the functionrj is clearly a solution, while for
j ∈ �+(k) ∩ �−(k) we obtain a second solutionrj log r. It will be convenient to make a
transformv = log r. Then a solution of the formrj will be transformed toejv and a solution of
the formrj log r is transformed tovejv. We see immediately that all solutions to the equation
L

p

(k)f (r) = 0 are transformed to solutions of the equationM�(k)g(v) = 0 whereM�(k) is the
constant coefficientlinear differential operator defined by

M�(k) :=
∏

�∈�+(k)

(
d

dv
− �

) ∏
�∈�−(k)

(
d

dv
− �

)
. (3)

Later we shall also use the notation

� (k) = (k, . . . , k + 2p − 2,−k − n + 2, . . . ,−k − n + 2p) , (4)

which is a vector taking all values from�+ (k) and�− (k) (including multiplicities). From this
we have immediately

Proposition 1. LetN be a natural number and suppose thatSk,l : R → C are cardinalL-splines
with respect to the differential operatorM�(k) for k = 0, . . . , N, l = 1, . . . , ak.Then the function
S : Rn \ {0} → C defined forx = r� with r > 0 and� ∈ Sn−1 by

S(r�) =
N∑

k=0

ak∑
l=1

Sk,l(log r)Yk,l(�)

is a cardinal polyspline of orderp.

It might be a temptation to say that cardinal polysplines are just the functions of the form

S (r�) =
∞∑
k=0

ak∑
l=1

Sk,l (log r) Yk,l(�), (5)

whereSk,l areL-splineswith respect toM�(k); however, onehas tobecareful since theconvergence
of the sum has to be justified and the differentiability of the functionS defined in (5) up to the
order 2p − 2 is not a consequence of the absolute convergence of the sum.
On the other hand, wemention the following result in [12] which will be used in the last section

to prove uniqueness of interpolation with polysplines.

Theorem 2. Let S : Rn \ {0} → C be a cardinal polyspline of orderp. Then the function
Sk,l : R → C defined by

Sk,l (v) :=
∫

Sn−1
S(ev�)Yk,l(�) d� (6)

is a cardinalL-spline with respect toM�(k) for k ∈ N0, l = 1, . . . , ak.
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3. Cardinal L-splines

Theprevious section has shown that polysplines are intimately related to a sequenceofL-splines
given by the Fourier coefficients of the polysplines.
Micchelli hasworked out in[16,17] a theory of cardinalL-splineswith respect to a linear differ-

ential operatorL (of orderN + 1)with constant coefficients. As in [16]� := (�1, �2, . . . , �N+1)

denotes an (unordered) vector with repetitions according to themultiplicitieswith real coefficients
�j , j = 1, . . . , N + 1. ThenL defined by

L :=
N+1∏
j=1

(
d

dx
− �j

)

is a linear differential operator of orderN + 1. Let us define the polynomialq� as

q� (z) :=
N+1∏
j=1

(
z − �j

)
(7)

ande� = {e�j : j = 1, . . . , N + 1}. In the theory of cardinalL-splines the functionA�:R × (C \
e�) → C (cf. [17, p. 223]) defined by

A�(x, �) = 1

2�i

∫
�

1

q� (z)

exz

ez − �
dz (8)

is of fundamental importance. Here� is a closed simple curve in the complex plane surrounding
all �j , j = 1, . . . , N + 1 and having the zeros of the functionez − � in the exterior of�. The
Euler–Frobenius functionis defined by

��(x, �) := A�(x, �) ·
N+1∏
j=1

(e�j − �). (9)

For x = 0 it is a polynomial of degree at mostN in the variable� (Corollary 2.1 in[17]) and
�� (0, �) is called theEuler–Frobenius polynomial. Next we recall the definition of the so-called
basis spline which will be denoted byQ�: Define the functions� (�) := ∏N+1

j=1 (e−�j −�) and let

sj , j = 0, . . . , N + 1 be the coefficients ofs�(�), i.e.s� (�) = ∑N+1
j=0 sj�

j . Due to the choice of
the real numbersj it is straightforward to prove that the following cardinalL-spline has support
in the interval[0, N + 1], namely

Q� (x) :=
N+1∑
j=0

sj · A� (x − j, 0) · 1[0,∞) (x) . (10)

The following fundamental formula relates the Euler–Frobenius function with the basis–spline
(cf. [17, p. 221 and 222]) for 0�x�1,

Rx
�(�) :=

N∑
j=0

�N−jQ� (x + j) = (−1)N

e(�1+···+�N+1)
· ��(x, �). (11)
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3.1. The fundamentalL-spline

Let us now consider the interpolation problem for cardinalL-splines. A cardinalL-splineL�
is calledfundamentalL-splineif L� (0) = 1 andL� (j) = 0 for all j ∈ Z, j �= 0 and if it decays
exponentially, i.e. if there exist two constantsA,B > 0 such that

|L� (x)| �Ae−B|x| for all x ∈ R. (12)

We cite the following result from[17, Corollary 2.3].

Theorem 3. If A� (0,−1) �= 0 then there exists a unique fundamental L-spline.

We now recall from[20, p. 271] the construction of the fundamental splineL� since we need
a detailed knowledge of the constantsA andB in the estimate (12). Define

P� (�) := R0
�

(
1

�

)
�N =

N∑
j=0

�jQ� (j) . (13)

The following result in[17, Corollary 2.3] shows thatP� has no zeros on the unit circle.

Proposition 4. The function1/P�(�) is holomorphic in a neighborhood of the unit circle if and
only ifA� (0,−1) �= 0.

Assume now that the function�→1/P�(�) is holomorphic on the annulus {R1< |�|<R2}
(whereR1 < 1< R2), and consider its Laurent series

1

P� (�)
=

∞∑
j=−∞

�j�
j .

According to[20, p. 271] the fundamentalL-splineL� is given by

L� (x) :=
∞∑

j=−∞
�jQ� (x − j) . (14)

The series in (14) converges absolutely and locally uniformly. The estimate in the next proposi-
tion is straightforward using the Cauchy estimates for the coefficients of a Laurent series. The
somewhat technical proof is omitted.

Proposition 5. Let� = (�1, . . . , �N+1). Suppose that1/P�(�) is holomorphic on the annulus
{R1 < |�| < R2} with R1 < 1 < R2. Let � > 0 with R1 < � < 1 < 1

� < R2 and put
ε = − log � > 0.Then there exists a constantG(�) depending only on� andN such that

|L� (x)| �G(�) max
y∈(0,N+1)

|Q� (y)| · max
�� |�|�1/�

1

|P� (�)| · e−ε|x|.

We mention that the same proof yields the inequality∣∣∣∣ dm

dxm
L� (x)

∣∣∣∣ �G(�) max
y∈(0,N+1)

∣∣∣∣ dm

dym
Q� (y)

∣∣∣∣ · max
�� |�|�1/�

1

|P� (�)| · e−ε|x| (15)

for eachm = 0, . . . , N − 1.
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3.2. Estimate ofmaxQ�

In the following we want to give an estimate of the basis splineQ� and its derivatives, i.e.

we want to estimate
∣∣∣ dm

dxm Q� (x)

∣∣∣ wherem satisfies 0�m�N − 1. For this we define for given

� = (�1, . . . , �N+1) the number

M� := max{|�1|, . . . , |�N+1|}
and forM� �= 0 we put

B� (m) :=
m∑

k=0

M−k
� max

0�x �1
|A(�1,...,�N+1−k) (x, 1) |. (16)

Note thatB� (0) = max0�x �1 |A(�1,...,�N+1) (x, 1) | andB�(m)�B�(m + 1).

Recall thatr� (�) = ∏N+1
j=1 (e�j − �).

Theorem 6. LetN ∈ N0 and� > 0be given. Then for every0�m�N−1 there exists a constant
Cm > 0,depending only onN and�, such that for all� = (�1, . . . , �N+1) with the property that
|e�j − 1|�� for all j = 1, . . . , N + 1, the following inequality:∣∣∣∣ dm

dxm
Q� (x)

∣∣∣∣ �Cme−(�1+···+�N+1)Mm
� · B� (m) · |r� (1)| (17)

holds for allx ∈ R.

Proof. Let us prove the claim at first for the casem = 0: The basis splineQ� is non-negative
and it has support in[0, N + 1]; for y ∈ [0, N + 1] we can findj ∈ {0, 1, . . . ,̇M} andx ∈ [0, 1]
with y = x + j . Clearly

Q� (y) �
N∑

j=0

Q� (x + j) .

Taking� = 1 in formula (11), one obtains that

Q� (y) � |�� (x, 1)|
e(�1+···+�N+1)

= 1

e(�1+···+�N+1)
|A� (x, 1) · r� (1)| . (18)

Hence the claim is true form = 0 whereC0 = 1.
We proceed by induction overm = 0, . . . , N − 1 and assume that the statement is true for

m�N − 1. If m = N − 1 we are done, so assume thatm < N − 1. We apply the induction
hypothesis to� = (�1, . . . , �N+1) and�2 = (�1, . . . , �N) (note thatm�N − 2), hence for all
x ∈ R ∣∣∣∣ dm

dxm
Q� (x)

∣∣∣∣ � C1e
−(�1+···+�N+1)Mm

� · B� (m) · |r� (1)| ,∣∣∣∣ dm

dxm
Q�2 (x)

∣∣∣∣ � C2e
−(�1+···+�N)Mm

�2
· B�2 (m) · ∣∣r�2 (1)

∣∣ .
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In [7, p. 119] or [10, Part II] one can find the formula

d

dx
Q(�1,...,�N+1) (x) = �N+1Q(�1,...,�N+1) (x) + e−�N+1Q(�1,...,�N) (x) (19)

+Q(�1,...,�N) (x − 1) .

Differentiating the last equationm times yields

dm+1

dxm+1
Q� (x) = �N+1

dm

dxm
Q(�1,...,�N+1) (x) + e−�N+1

dm

dxm
Q(�1,...,�N) (x)

+ dm

dxm
Q(�1,...,�N) (x − 1) .

The triangle inequality and our induction hypothesis show that∣∣∣∣ dm+1

dxm+1
Q� (x)

∣∣∣∣ � |�N+1|C1e
−(�1+···+�N+1)Mm

� · B� (m) · |r� (1)|
+(e−�N+1 + 1)C2e

−(�1+···+�N)Mm
�2

· B�2 (m) · |r�2 (1) |.
Now r(�1,...,�N+1) (1) = (e�N+1 − 1)r(�1,...,�N) (1) and|�N+1|�M�, andM

m
�2

�Mm
� . Thus

∣∣∣∣ dm+1

dxm+1
Q� (x)

∣∣∣∣ �e−(�1+···+�N+1) |r� (1)| · Mm+1
� · C�,

where

C� =
(
C1B� (m) + C2

1

M�
B�2 (m)

(e−�N+1 + 1)e�N+1∣∣e�N+1 − 1
∣∣

)
.

Further we have the trivial estimateB� (m) �B� (m + 1) and

B�2 (m) =
m+1∑
k=1

max
0�x �1

∣∣∣M−(k−1)
� A(�1,...,�N+1−k) (x, 1)

∣∣∣ �M�B� (m + 1) .

The functionx �−→ |(x +1)(x−1)−1| is bounded onR \ [1− �, 1+ �]. Since|e�j −1|�� for all
j = 1, . . . , N + 1,we inferC� �C3B�(m + 1)whereC3 depends only onN and�. The proof
is complete. �

3.3. Symmetry properties

Let � = (�1, . . . , �N+1) and define−� = (−�1, . . . ,−�N+1). For all x ∈ R and � /∈
e� ∪ e−� ∪ {0} the following identity (see[17, p. 213]):

A�

(
1− x,

1

�

)
= (−1)N+1� · A−�(x, �) (20)

follows by a direct computation. As in[11] we call� nearly symmetricif there existsc ∈ R and
a permutation� of the set{1, . . . , N + 1} such that−�j = c + ��(j) for j = 1, . . . , N + 1, or
shortly−� = c + �. In the casec = 0 we call� symmetric. Note that forj ∈ {1, . . . , N + 1}
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with � (j) = j one obtains that−c = �j + ��(j) = 2�j and therefore�j = −1
2c. It follows that

�1 + · · · + �N+1 = −1
2 (N + 1) c (21)

since�j + ��(j) = −c for j = 1, . . . , N + 1. A simple computation shows that for allx ∈ R and
� /∈ e� ∪ e−� ∪ {0}

A−�(x, �) = e(x−1)cA�(x, �e−c). (22)

Combining Equation (20) and (22) one obtains

Proposition 7. Let� be nearly symmetric with respect toc ∈ R. For all � /∈ e� ∪ e−� ∪ {0} and
all x ∈ R the following equality:

A�

(
1− x,

1

�

)
= (−1)N+1�e(x−1)cA�(x, �e−c) (23)

holds.

Similar computations lead to the following result (cf. Proposition 7 in[11]):

Proposition 8. Let� be nearly symmetric with respect toc ∈ R. Then the polynomialP�(�)
defined in(13) is given by

P�(�) = (−1)N�eNc · ��(0, �e−c). (24)

4. Estimate of the functionA� (x, �)

In this section we will give an estimate of the asymptotic behavior of the functionA�(k) (x, �)
for k → ∞ and 0�x�1. This estimate will be used to prove the existence of an interpolation
polyspline for the case that� = � (k) is of the form (4).

Assume that for eachk ∈ N0 the vector� = � (k) = {�1 (k) , . . . , �N+1 (k)} is of the following
form: there existsr ∈ {1, . . . , N + 1} (independent ofk ∈ N0), pairwise different real numbers
C1, . . . , Cr , and pairwise different numbersCr+1., . . . , CN+1, such that for allk ∈ N0 we have
the equalities

�j = �j (k) =
{−k + Cj for j = 1, . . . , r,

k + Cj for j = r + 1, . . . , N + 1.
(25)

Then for largek all �j (k) are pairwise different forj = 1, . . . , N + 1, consequently

A�(k) (x, �) =
N+1∑
j=1

1

q ′
�(k)

(
�j (k)

) e�j (k)x

e�j (k) − �
, (26)

whereq ′
�(k)

is the derivative ofq�(k). Let us splitA�(k) (x, �) into a sum of two functions

ck (x, �) =
r∑

j=1

1

q ′
�

(
�j (k)

) e�j (k)x

e�j − �
,

dk (x, �) =
N+1∑

j=r+1

1

q ′
�

(
�j (k)

) e�j (x)x

e�j − �
.
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LetK be a compact subset of the complex plane such that 0/∈ K and let� be a positive number.
Then it is easy to see that the sequence(dk (x, �))k∈N0

with � ∈ K and 0�x�1 − � is of
uniform exponential decayin the following sense: there exists a polynomialP andε > 0 such
that|dk (x, �)| � |P (k)| · e−ε·k for all k ∈ N0, all � ∈ K, and all 0�x�1− �.
Let us define

bk (x) =
r∑

j=1

e�j (k)x

q ′
�

(
�j (k)

) .
The following simple result tells us that the asymptotic of�A�(k)(x, �) for k → ∞ is the same
as ofbk(x).

Proposition 9. DefineE(k, �) := ∏r
l=1(e

�l (k)−�) and letK be a compact subset of the complex
plane not containing0 and let0 < � < 1.Then we can write

�A�(x, �) = (−�)r

E(k, �)
bk(x) + �fk(x, �), (27)

wherefk(x, �) is of uniform exponential decay on[0, 1− �] andE(k, �) converges uniformly on
K to (−�)r �= 0.

Proof. DefineEj (k, �) := ∏r
l=1,l�=j

(
e�l (k) − �

)
. ThenEj (k, �) is a sum of sequences of

uniform exponential decay and the constant(−�)r−1 . It is easy to see that

ek (x, �) :=

 r∑

j=1

e�j (k)x

q ′
�

(
�j (k)

)Ej (k, �)


− (−�)r−1 bk (x)

is of uniform exponential decay. Thus

fk (x, �) := ek (x, �)

E (k, �)
+ dk (x, �) = A� (x, �) − (−�)r−1

E (k, l)
bk (x) (28)

is of uniform exponential decay.�

Theorem 10. Let� (k) be as in(25) and letK be a compact subset of the complex plane with
0 /∈ K. Then for each� > 0 there exists a constantD > 0 and a natural numberk0 such that for
all k�k0, all � ∈ K, and all0�x�1− � the following estimate:

∣∣A�(k) (x, �)
∣∣ �D

1

kN
(29)

holds. If there existsc ∈ R such that� (k) is nearly symmetric with respect toc for all k�k0 then
the inequality is valid for all0�x�1.

Proof. We may assume thatK is disjoint with e�(k) for largek. Let � (t) = eit for t ∈ [0, 2�]
and define�k (t) := −k + k� (t). Let k0 ∈ N0 be so large that

∣∣Cj

∣∣ < 1
2k0 for all j =

1, . . . , N + 1. Then for allk�k0 the curve�k surrounds�1, . . . , �r but not�r+1, . . . , �N+1.
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By Cauchy’s Theorem

bk (x) =
r∑

j=1

e�j x

q ′
�

(
�j

) = 1

2�i

∫
�k

ezx

q� (z)
dz. (30)

Note that|�j − z|�k − 1
2k0� 1

2k for all zon the path�k and for allj = 1, . . . , N + 1. Clearly
|ezx | �exRe(z) (assuming 0�x�1) is bounded forz ∈ �k. Hence the standard estimate for line
integrals gives for a suitable constantM > 0 the inequality

|bk (x)| �M
1

kN+1
k

for all 0�x�1 andk�k0. By (28) we have uniform exponential decay for(�fk(x, �))k∈N0
, i.e.

there exists a polynomialP andε > 0 such that|�fk(x, �)|� |P (k)| · e−ε·k for all k ∈ N0, all

0�x�1− �, and all� ∈ K. Since (−�)
r

E(k,�)
converges uniformly to 1 it follows that for largek

|�A�(x, �)| �
∣∣∣∣ (−�)r

E (k, �)
bk (x)

∣∣∣∣+ |�fk(x, �)| �2M
1

kN
+ |P (k)| · e−ε·k

and (29) is proven for 0�x�1− �.
For the second statement letK1 := K ∪ {1/�ec : � ∈ K} and let� = 1

4. Then there exists a
constantD > 0 such that

∣∣A�(k) (x, �)
∣∣ �D 1

kN for all 0�x�1− � and for all� ∈ K1. Let now
1
2 �y�1 and definex = 1 − y. By Equation (23), (replace� by �ec andx by y and note that
N + 1 = 2p)

A�(y, �) = 1

�ec
e−(y−1)cA�

(
1− y,

1

�ec

)
= 1

�ec
excA�

(
x,

1

�ec

)
.

Hence|A�(y, �)| �D2D
1
kN for all 12 �y�1 and the proof is complete.�

Theorem 11. Let� (k) be as in(25) and letK be a compact subset of the complex plane with
0 /∈ K. If r < N + 1 then there exist constantsC,D > 0 and a natural numberk0 such that for
all k�k0 and all� ∈ K:

C
1

kN
�
∣∣A�(k)(0, �)

∣∣ �D
1

kN
. (31)

Further the following inequality holds for all� ∈ (−∞, 0) ∩ K and allk�k0;

(−1)N+r A�(k)(0, �) > 0. (32)

Proof. Note that by (30)

kNbk (x) = 1

2�i

∫ 2�

0

e−kx(1−�(t)) · �′ (t)∏r
j=1

(
� (t) − Cj

k

)∏N+1
j=r+1

(
−2+ � (t) − Cj

k

) dt. (33)

Clearly the denominator of the integrand converges to(� (t))r (� (t) − 2)N+1−r. For x = 0 the
nominator is trivially convergent and hence we see thatkNbk (0) converges to

dr := 1

2�i

∫
�

1

zr (z − 2)N+1−r
dz.
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Since� surroundsz = 0 but notz = 2 this value can be computed by residue theory (see e.g.
Proposition 2.4 in[6, p. 113]) and we obtain

dr = (−1)r−1+N

(r − 1)! 2N (N + 1− r) . . . (N − 1) .

It follows that there exist a constantC >0 and an integerk0 such that(−1)r−1+N bk (0) �
C 1

kN for all k�k0:

Assume now thatK ⊂ (−∞, 0). Since fork −→ ∞ we have (−�)
r

E(k,�)
−→ 1 uniformly onK,

there exists an integerk1 such that for allk�k1 and all� ∈ K:

(−�)r

E(k, �)
(−1)r−1+N bk (0) � C

2

1

kN
> 0.

Since the sequence(�fk(0, �))k∈N0
is of uniform exponential decay there exists a polynomialP

and a numberε > 0 such that|�fk(0, �)| � |P(k)| · e−ε·k for all k ∈ N0 and for all� ∈ K. Then
by (27) the following inequalities hold:

(−1)r−1+N �A� (0, �) � (−�)r

E (k, �)
(−1)r−1+N bk (0) − |�fk (0, �)|

� C

2

1

kN
− |P (k)| · e−ε·k � 1

4

C

kN

for all sufficiently largek and for all� ∈ K. Since the setK contains only negative numbers we
obtain estimate (32) for all sufficiently largek.
Now assume thatK is a compact subset in the complex planeC. Then similar arguments as

above show that for somek1 ∈ N0 the inequality|�A� (0, �)| � 1
4

C
kN holds for all� ∈ K, and for

all k�k1. �

5. Uniform estimates of fundamentalL-splines

In the rest of the paper we will assume that� (k) is given by (4). We write�j (k) = −k + Cj

for j = 1, . . . , p with

C1 = 2− n,C2 = 4− n, . . . , Cp = 2p − n

and�j (k) = k + Cj for j = p + 1, . . . ,2p with

Cp+1 = 0, Cp+2 = 2, . . . , C2p = 2p − 2.

HenceN + 1 = 2p and clearly� (k) is nearly symmetricwith respect toc = n − 2p where
n ∈ N0 is the dimension of the underlying spaceRn.

Theorem 12. Let� (k) be as in(4) and letK be a compact subset of the complex plane with
0 /∈ K.Then there exist a constantM > 0 and an integerk0 such thatP�(k)(�) �= 0 for all k�k0
and for all� ∈ K; further for all k�k0:

C (k) := max
x∈[0,1]

Q�(k) (x) · max
�∈K

1∣∣P�(k)(�)
∣∣�M. (34)
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More generally,for everym = 0, . . . ,2p − 2 there exist a constantM1 > 0 and an integerk1
such that for all� ∈ K and for allk�k1:

Cm (k) := max
x∈[0,1]

∣∣∣∣ dm

dxm
Q�(k) (x)

∣∣∣∣ · max
�∈K

1∣∣P�(k) (�)
∣∣�M1k

m. (35)

Proof. UsingN + 1 = 2p andc = n − 2p Proposition8 yields

P�(k)(�) = (−1) �eNcA�(k)(0, �e
−c) · r�(k)(�e

−c), (36)

wherer�(k)(�) = ∏2p
j=1(e

�j (k) − �). By Theorem11 applied to the compact sete−cK := {e−c� :
� ∈ K} there existsC > 0 andk0 ∈ N0 such thatC�

∣∣A�(k)(0, �e
−c)
∣∣ · k2p−1 for all � ∈ K and

for all k�k0. Thus by (36)P�(k) (�) �= 0 for all � ∈ K and for allk�k0 and the first statement
is proven. Furthermore, we have obtained the estimate

1∣∣P�(k)(�)
∣∣� e−Nc

C|�| k
2p−1 1

r�(k)(�e−c)
.

In order to prove (34) we apply Theorem 6 withm = 0, and obtain∣∣Q�(k) (x)
∣∣ �Ce−(�1+···+�N+1) max

0�y �1

∣∣A�(k) (y, 1)
∣∣ · ∣∣r�(k) (1)

∣∣ .
Theorem10 shows that there existsD1 > 0 such that

max
x∈[0,1]

Q�(k) (x) �D1e
p(n−2p) 1

k2p−1

∣∣r�(k) (1)
∣∣ .

Hence we obtain for a suitable constantD2 (note that 0/∈ K) the inequality

C (k) �D2
∣∣r�(k) (1)

∣∣max
�∈K

1∣∣r�(k)(�e−c)
∣∣ .

The proof is accomplished by the fact that

r�(k) (1)

r�(k)

(
�e−c

) =
∏p

k=1

(
e−k+Cj − 1

)∏2p
k=p+1

(
ek+Cj − 1

)
∏p

k=1

(
e−k+Cj − �e−c

)∏2p
k=p+1

(
ek+Cj − �e−c

)
converges uniformly fork → ∞ to 1

(�e−c)
p . Estimate (35) follows in the same way using again

Theorems 6 and 10.�

For the proof of ourmain result we need the following propositionwhich establishes an uniform
estimate of the type (12) of all fundamental splines for the operatorsL generated by the vectors
� (k).

Proposition 13. For everyk ∈ N0 let� (k) be as in(4).Then there exists a fundamentalL-spline
L�(k) with respect to the operatorM�(k). Further there exist constantsM > 0 andε > 0 such
that for all k ∈ N0 and allv ∈ R the following estimate holds:∣∣L�(k) (v)

∣∣ �Me−ε|v|. (37)
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Proof. At first we show thatA�(k) (0,−1) �= 0 for all k ∈ N0. The integral

A�(k) (0,−1) = 1

2�i

∫
�

1

q�(k) (z)

1

ez + 1
dz (38)

can be computed by residue theory and it reduces to a rational expression which has a non-zero
denominator. For simplicity let us consider the casewhen the constants�j (k)are pairwise distinct.
Then

A�(k) (0,−1) =
2p∑
j=1

1

q ′
�(k)

(
�j (k)

) 1

e�j (k) + 1
.

Obviously,q ′
�(k)

(
�j (k)

)
are integers. Let us assume thatA�(k) (0,−1) = 0. After multiplying

by
∏2p

j=1

(
e�j (k) + 1

)
we arrive at an equation of the type

l∑
i=1

	ie
�i = 0,

here	i are non-zero rationals and�i are integers obtained by sums of some of the constants
�j (k). Due to the special form of the constants�j (k) provided in (4) at least one of the�i is
non-zero. Thus we may apply the classical theorem ofLindemannon transcendental numbers
which states that the above equality is impossible, see e.g. [15, p. 213] or [3, p. 6]. It follows that
A�(k) (0,−1) �= 0.

By Theorem 3 we can find for eachk ∈ N0 a fundamentalL-splineL�(k):R → R. Hence,
there exist constantsMk andεk such that for allv ∈ R holds∣∣L�(k) (v)

∣∣ �Mke
−εk |v|.

We have to show that the constantsMk can be chosen as a bounded sequence, and similarly that
εk �ε for all k ∈ N0. Let 0< � < 1 and putK := {� ∈ C : �� |�|�1/�}. Choose arbitrary�∗
with 0 < �∗ < � and putT := {� ∈ C : �∗ � |�|�1/�∗}. By Theorem12 applied to the compact
setT there existsk0 ∈ N0 such that

P�(k)(�) �= 0

for all � ∈ T and for allk�k0. HenceP�(k) is holomorphic on the open annulus given by the
radiiR1 = �∗ < 1< 1/�∗ = R2 for all k�k0. Again by Theorem12 applied to the compact set
K there exist a constantM∗ > 0 and a natural numberk1�k0 such that

C (k) := max
x∈[0,1]

Q�(k) (x) · max
�∈K

1∣∣P�(k) (�)
∣∣�M∗ (39)

for all k�k1. Apply now Proposition5 with respect to all sets� (k) with k�k1. It follows that
there exists a constantG(�) (independent ofk) such that the fundamentalL-splinesL�(k) for
k�k1 can be estimated by∣∣L�(k) (v)

∣∣ �G(�) C (k) e−ε∗|v| �G(�)M∗e−ε∗|v|,

where ε∗ := − log �. Finally after putting M := max{M∗,M0, . . . ,Mk1−1} and
ε := min{ε∗, ε0, . . . , εk1−1} the proof is complete. �
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6. The main result

At first we need some notations: assume that the functionf :Sn−1 → R be square-integrable
with respect to the surface measured� onSn−1and define the usual scalar product

〈f, g〉
L2(Sn−1)

=
∫

Sn−1
f (�)g(�) d�.

Recall thatYk,l (�), for k ∈ N0, l = 1, . . . , ak denotes an orthonormal basis of the spaceHk of
all spherical harmonics with respect tod�. For allk ∈ N0, andl = 1, . . . , ak the Fourier–Laplace
coefficients off are given by

fk,l :=
∫

Sn−1
f (�)Yk,l(�) d�.

By [23,Corollary 2.3] every square-integrable functionf can beexpanded into aFourier–Laplace
seriesgiven by

f (�) =
∞∑
k=0

ak∑
l=1

fk,l · Yk,l(�), (40)

where convergence is understood inL2(S
n−1) with the norm

‖f ‖
L2(S

n−1)
=
√

〈f, f 〉
L2(S

n−1)
.

For everyf ∈ L2(S
n−1) define

‖f ‖s :=
∞∑
k=0

ak∑
l=1

∣∣fk,l

∣∣ · (1+ k)s . (41)

The subspace of allf ∈ L2(S
n−1) with ‖f ‖s < ∞ is denoted byHs,1(Sn−1), see [1].

By [21], for all Yk ∈ Hk we have the inequality

|Yk(�)| �Kk(n/2)−1 ‖Yk(�)‖L2(S
n−1)

for � ∈ Sn−1.

Since‖Yk,l(�)‖L2(S
n−1)

= 1 we obtain the estimate

∞∑
k=0

ak∑
l=1

∣∣fk,l

∣∣ ∣∣Yk,l (�)
∣∣ �K

∞∑
k=0

ak∑
l=1

∣∣fk,l

∣∣ (1+ k)
n
2−1 = K ‖f ‖ n

2−1 . (42)

It follows that a functionf ∈ H
n
2−1,1(Sn−1) possesses an absolutely uniformly convergent

Fourier–Laplace series.
Using some standard techniques (see e.g.[8]) one can prove the following criterion:

Proposition 14. Assume thatf :Sn−1 → R is a 2q-continuously differentiable function where
2q�2 (p − 1) + 2

[
n
2

]
. Thenf ∈ Hs,1(Sn−1) for s = 2 (p − 1) + (n/2) − 1.
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6.1. Construction of fundamental polysplines

As in the one-dimensional case we show at first the existence of “fundamental polysplines” in
the following sense:

Definition 15. A fundamental polysplineLf :Rn \ {0} → R for the data function
f :Sn−1 → C is the polyspline of orderp such that for eachj ∈ Z the interpolation
conditions

Lf

(
ej�

) = 0 for all j �= 0 and� ∈ Sn−1,

Lf

(
ej�

) = f (�) for j = 0 and all� ∈ Sn−1 (43)

hold, as well as the following growth condition:∣∣Lf (r�)
∣∣ �Me−ε|logr| for all r > 0 and� ∈ Sn−1. (44)

The next result ensures the existence of fundamental polysplines for a large class of data
functions.

Theorem 16. Let s = sp,n = 2 (p − 1) + (n/2) − 1. Then there exist constantsM > 0 and
ε > 0with the following property:for eachf ∈ Hs,1(Sn−1) there exists a polysplineLf of order
p such that(43)holds and∣∣∣∣ dm

drm
D
Lf (r�)

∣∣∣∣ �Me−ε|log r| ‖f ‖s (45)

for all m ∈ N0 and
 = (
1, . . . , 
n−1) ∈ Nn−1
0 satisfying the conditionm + |
| �2p − 2; here

D
 denotes the differential operator

D
 := �
1

��
1
1

· · · �
n−1

��
n−1
n−1

.

Proof. LetL�(k) denote the fundamental cardinalL-splinewith respect to thedifferential operator
M�(k). Now using the Fourier–Laplace series off we want to define a fundamental polyspline
Lf by

Lf (r�) :=
∞∑
k=0

ak∑
l=1

fk,l · L�(k) (log r) · Yk,l(�). (46)

The series converges absolutely and uniformly since by (37) and (42) we have the estimate:

∣∣Lf (r�)
∣∣ �Me−ε|log r|

∞∑
k=0

ak∑
l=1

∣∣fk,l

∣∣ ∣∣Yk,l(�)
∣∣ �K ‖f ‖ n

2−1 . (47)

FurthermoreLf is polyharmonic on each annulus A(ej , ej+1) since each summandL�(k)

(log r) · Yk,l (�) is according to the results in Section 2 polyharmonic of orderp and the uniform
limit of such functions is again polyharmonic of orderp.
SinceL�(k) (0) = 1 andL�(k) (j) = 0, for all j ∈ Z, j �= 0, we conclude thatLf interpolates

the given dataf , i.e. (43) holds.
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We want to prove that the partial derivatives of� → Lf (r�) andr → Lf (r�) exist up to the
order 2(p − 1). It suffices to prove the uniform convergence of the series

∞∑
k=0

ak∑
l=1

fk,l · dm

drm
L�(k) (log r) · D
Yk,l(�) (48)

for m + |
| �2p − 2. By formula (15), and Theorem 12, there exist constantsC > 0 andε > 0
andk0 ∈ N such that for allk�k0 holds∣∣∣∣ dm

drm
L�(k) (log r)

∣∣∣∣ �Ckme−ε|logr|.

By [22], or [21], there exists a constantK > 0 independent ofk such that for allYk ∈ Hk, and
for all 
 ∈ N0 with |
| �N := 2 (p − 1) − m, the following estimate holds:∣∣D
Yk (�)

∣∣ �K · k(n/2)−1+N ‖Yk (�)‖
L2(S

n−1)
.

Applying the last inequality toYk,l(�) (note that
∥∥Yk,l (�)

∥∥
L2(S

n−1)
= 1) we obtain that for all


 ∈ Nn−1
0 with |
| �N := 2 (p − 1) − m:

∞∑
k=0

ak∑
l=1

∣∣∣∣fk,l · dm

drm
L�(k) (log r) · D
Yk,l(�)

∣∣∣∣
�CKe−ε|log r|

∞∑
k=0

ak∑
l=1

|fk,l | · km · k(n/2)−1+N

= CKe−ε| logr|
∞∑
k=0

ak∑
l=1

∣∣fk,l

∣∣ · k2(p−1) · k(n/2)−1.

Since‖f ‖sp,n
< ∞ we conclude thatLf (r�) is differentiable up to the order 2(p − 1) and (45)

holds. �

6.2. Construction of interpolation polysplines

Now let us construct interpolation polysplines. Assume thatdj are data functions defined on
the spheresejSn−1. Then we putfj (�) := dj (e

j�), consequentlyfj is a function on the sphere
Sn−1.

Theorem 17. Let ��0 ands = sp,n = 2 (p − 1) + (n/2) − 1 andfj ∈ Hs,1(Sn−1) for j ∈ Z.
Suppose that there exists a constantC > 0 such that the inequality∥∥fj

∥∥
s
�C |j |� = C

∣∣∣log ej
∣∣∣� (49)

holds for allj ∈ Z. Then there exists a polysplineS:Rn \ {0} → R of orderp such that

S(ej�) = fj (�) = dj (e
j�) for all � ∈ Sn−1

holds for eachj ∈ Z, and there exists a constantD > 0 such that for all� ∈ Sn−1 and allr > 0:

|S (r�)| �D |log r|� .
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Proof. The following well-known fact can be found, e.g. in[18]: Let ��0 andε > 0. Then there
existsD (ε, �) > 0 andR0 > 0 such that for allx ∈ R with |x| �R0 the following inequality
holds:

∞∑
j=−∞

|j |� e−ε|x−j | �D (ε, �) |x|� . (50)

For eachfj we can define a fundamental polysplineLfj
as in Theorem16. We define the inter-

polation polyspline by putting

S (x) :=
∞∑

j=−∞
Lfj

(
xe−j

)
.

Estimate (45) yields|Lfj
(xe−j )|�Me−ε

∣∣log∣∣xe−j
∣∣∣∣‖fj‖s , hence by (49) and (50) it follows

|S (x)| �
∞∑

j=−∞
MCe−ε

∣∣log∣∣xe−j
∣∣∣∣ |j |� �CMD(ε, �) |log |x||� .

This shows thatS is well-defined and since the convergence is locally uniform it is clear thatS is
continuous onRn \ {0} and polyharmonic on the open annuliA

(
ej , ej+1

)
for j ∈ Z.

The differentiability ofS up to order 2(p − 1) follows from similar estimates using inequality
(45). Then

∞∑
j=−∞

∣∣∣∣ dm

drm
D
Lfj

(r�e−j )

∣∣∣∣ �
∞∑

j=−∞
Me−ε

∣∣log rej
∣∣‖fj‖s .

This ends the proof. �

7. Uniqueness of interpolation polysplines

In this section we will prove uniqueness of interpolation polysplines.

Theorem 18. Let ��0.SupposeS1, S2 : Rn \ {0} → C be polysplines of orderp such that

|Si(r�)| �C
(|log r|�)

for i = 1,2. If S1
(
ej�

) = S2
(
ej�

)
for all j ∈ Z and for all� ∈ Sn−1 thenS1 ≡ S2.

Proof. Let us putS := S1 − S2. Let Sk,l (log r), with v = log r, be the Fourier–Laplace coeffi-
cients ofS as defined in (6). According to Theorem 2,Sk,l (v) are cardinalL-splines with respect
to the linear differential operatorM�(k) and clearlySk,l (j) = 0 for all j ∈ Z. Further, by the
assumption of the Theorem we see that for allv ∈ R inequality

∣∣Sk,l (v)
∣∣ �

∫
Sn−1

∣∣S(ev�)Yk,l(�)
∣∣ d��Ck,l | log ev|� = Ck,l |v|�

holds with some constantsCk,l > 0. HenceSk,l is a cardinalL-spline of polynomial growth. By
the uniqueness for interpolation cardinalL-splines (see[16, p. 204] applied for
 = 0) we infer
thatSk,l ≡ 0. This implies S≡ 0 and finishes the proof.�
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