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Abstract

Cardinal polysplines of ordes on annuli are functions ig2r—2 (IR”\ {O}) which are piecewise poly-
harmonic of ordep such than?—1s may have discontinuities on spheresif, centered at the origin and
having radii of the forme/, j € Z. The main result is an interpolation theorem for cardinal polysplines
where the data are given by sufficiently smooth functions on the spheres of ¢Ading center 0 obeying
a certain growth condition ifhj|. This result can be considered as an analogue of the famous interpolation
theorem of Schoenberg for cardinal splines.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Polysplines have been introduced by the first author as a multivariate analog of splines in
one variable, see e.ff]. In the monograph [10] applications of polysplines to Multiresolution
Analysis and Wavelet Analysis in the spirit of the work of Chui (see [5]) have been given. In this
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paper an interpolation result for cardinal polysplines on annuli (defined below) will be presented
which is motivated by the work of Schoenberg on cardinal spline interpolatiofl8ge

Let p andn be natural numbers which are fixed throughout the paper ar@’léte then-
dimensional Euclidean space addhe set of all integers. As in [11-13] a functioh: R” \
{0} — C s called acardinal polyspline of ordep on annuliif S is (2p — 2)-times continuously
differentiable and the restriction ¢fto each open annulus

Aj={xeR": el < x| < e/t

is a polyharmonic function of order for j € Z. Recall that a functiory defined on an open set
Uin R”" is polyharmonic of ordep if f is 2p-times continuously differentiable ard f(x) = 0
for all x € U whereA is the Laplace operator amtf’ its pth iterate. It is well known that a
polyharmonic function is real analytic, hence infinitely differentiable. Hence after differentiating
a polyspline(2p — 2) times one may have discontinuities only on the sphef&§e! = {e/y :
y € " Y with j € Z, where

S"l={yeR": |yl =1}

is the unit sphere. So one may see the sphei88~1, j € Z, as the multivariate analog of the
notion of the knotsj € Z of a cardinal spline in the univariate case. Later it will become clear
why these radii are of the fore, j € Z.

Schoenberg’s famous interpolation theorem for cardinal splines of odd degree says that for
data given on the knotg € Z of polynomial growth inj € Z there exists a cardinal spline
interpolating the data which is of the same polynomial growth on the real linfl8ge. 34]. The
aim of this paper is to present an analog of Schoenberg’s result for polysplines in the following
way: the data are given by functiods : e/S"1 — Cfor j € 7 and we wantto find a polyspline
S : R"\ {0} — C which interpolates the data, i.e. that

S(y)=d;(y) forally e e/S"tandj € 7 1)

and which has a similar growth as the data. Clearly we have to assume that the data fuhctions
are at least2p — 2) times continuously differentiable. It turns out that the results are naturally
formulated in the context of the Sobolev spagg'st (S"~1) for appropriate > 0, for details see
Section 6.

Our main result states the following: Lek 0 be fixed; fos = 5, , = 2(p —1)+(n/2) —1and
fi € H¥Y(S"™Y), j € 7, define functiong/; : ¢/S"~ — Cbyd;(e/0) = f; (0) for 0 € S"~1.
Assume that the data functions obey the growth condition

I£ill, <Cllog e’ |" forall j e Z.

Then there exists a polyspling of order p interpolating the data functiong; (i.e. (1)) and
satisfying the estimate

IS (x)| <D|log|x||” forall x e R".

In order to explain the construction 8frecall that a functiom : R — R is acardinalL-spline

(herelL stands for a linear differential operator with constant coefficients of deyreel) if

u is (N — 1)-times continuously differentiable and if for everye Z there exists an infinitely
differentiable functionf; : R — C with Lf = 0 such thai« (r) = f; (¢t) forall € (I, (I + 1)).

The essence of our construction involves writing the Laplacian in spherical coordinates, expanding
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the polysplineS in a series of spherical harmonics, and, using the Micchelli theory of cardinal
L-splines, glueing the radial part together to §gtoughly speaking, this means that a polyspline
can be written in the form

oo ag
SG) =Y S oglx)) Y <|i|> ,

k=01I=1

whereY,;, k = 0,1,...,1 = 1,..., &, is a basis for the set of all spherical harmonics and
the coefficientss; ; areL-splines with respect to the linear differential operatfy,, defined in
(3). In order to achieve convergence of the sum one needs precise estimateduiodtdmental
L-splinestaking into account their dependence on the paranketer

The paper is structured as follows: Section 2 gives some basic facts about polysplines and
spherical harmonics in order to clarify the connection between polysplined -aptnes. In
Section 3 we give a brief account of the theory of Micchelli who has generalized in [16,17] the
results of Schoenberg on polynomial splines to the settingsplines.

In Section 4 we discuss asymptotic estimates of the Euler—Frobenius function (defined in
Section 3) depending on the paramdter Ng. In Section 5, we use these asymptotics to obtain
uniform estimates of fundamentaisplines containing the parameterSection 6 contains our
main result. Uniqueness of the interpolation splines will be shown in the last section. In the
references [4] and [14] the reader will find recent developments of “interpolation polysplines on
strips”, where the interpolation data lie on parallel hyperplanes.

2. Spherical harmonics and polysplines

Eachx € R" will be written in spherical coordinates= r0 with r >0 andf € S" % := {x
R": |x| = 1}. Recall that a functiow: S"~1 — C s aspherical harmoniof degreek € Ny if
there exists a homogeneous harmonic polynomial) of degreek such thatP (6) = Y () for all
0 € S". By a; we will denote the dimension of the vector spatgof all spherical harmonics
of degree exactly. By Y; ;(0),] = 1, ..., a we will denote an orthonormal basis of the space
‘H; endowed with the scalar product

/ f(0)g(0)do.
§n71

For the reader not familiar with spherical harmonics, it might be useful to consider the two-

dimensional case: identifg* with [0, 27) and choose as a bagis = \/% and

1 1
Yea(t) = ﬁ cosktr andYy 2 (1) = ﬁ sin kt.

For a detailed account we refer[@8] or [2].

Let R1 < Ry be positive real numbers and IR, R2) be the open intervelr € R: Ry <
r < Rp}. Assume that : (R1, R2) — C be infinitely differentiable and;, € H;. Thenitis well
known (see e.g. [10, p. 152]) thA(u(r) Yk (0)) = Yi(0) L kyu (r) where
d2 n-1d kk+n-2)
— —_—— ) 2
dr? + rodr r2 2)
By iteration we haveAPu = Y (0) - [L)]?u(r). Thus the functionu(r, 0) = u(r)Yx(0) is
polyharmonic of ordep if and only if [L)]7u(r) = O for all r € (R1, R2).

Ly =
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Let us put for convenience
Ay k) =1k, k+2,....k+2p—2},
A_k)={-k—n+2,—k—n+4,...,—k—n+2p}.
The space of solutions of the equatiﬁ@)f (r) = 0 which areC* for r > 0 is generated

by a simple basis: foj € A, (k) U A_ (k) the functionr/ is clearly a solution, while for

j € Ay(k) N A_(k) we obtain a second solutior log . It will be convenient to make a
transformv = log r. Then a solution of the form¥ will be transformed t@/? and a solution of
the formr/ log r is transformed tawe/V. We see immediately that all solutions to the equation
L{’k)f (r) = 0 are transformed to solutions of the equatidp,g(v) = 0 whereMy, is the
constant coefficierinear differential operator defined by

d i d
My =[] (5=-%) T] (5--%) (3)
dv dv
AeAy (k) AeN_(k)

Later we shall also use the notation
Ak)y=(k,....k+2p—2,—~k—n+2,...,—k—n+2p), (4)

which is a vector taking all values froth (k) andA_ (k) (including multiplicities). From this
we have immediately

Proposition 1. LetN be a natural number and suppose tay : R — C are cardinalL-splines
with respect to the differential operatdf s 4 fork =0, ..., N,I =1, ..., @.Thenthe function

S:R"\ {0} — C defined forx = r@ withr > 0andf € S*~* by

N

Ak
S(r0) =YY Sii(log r)Yi(0)

k=0 [=1

is a cardinal polyspline of ordep.

It might be a temptation to say that cardinal polysplines are just the functions of the form

oo ag
S@r0) =" Sk (og r) Yi(0). (5)
k=0 I=1

wheresS) ; areL-splines with respect tt/ ) ; however, one has to be careful since the convergence
of the sum has to be justified and the differentiability of the functfatefined in (5) up to the
order 3 — 2 is not a consequence of the absolute convergence of the sum.

On the other hand, we mention the following result in [12] which will be used in the last section
to prove unigueness of interpolation with polysplines.

Theorem 2. Let S : R" \ {0} — C be a cardinal polyspline of ordep. Then the function
Sk.1 : R — C defined by

S )= [ SE0V0)d0 ©)

is a cardinal L-spline with respect td/p ) for k € No, [ =1, ..., a.
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3. Cardinal L-splines

The previous section has shown that polysplines are intimately related to a sequeispéinés
given by the Fourier coefficients of the polysplines.

Micchelli has worked out ifil6,17] a theory of cardindl-splines with respect to a linear differ-
ential operatoL (of orderN + 1) with constant coefficients. Asin [16] := (11, 42, ..., An+1)
denotes an (unordered) vector with repetitions according to the multiplicities with real coefficients
Aj,j=1,..., N+ 1.ThenL defined by

N+1 o
L= — =2
I ()
j=1
is a linear differential operator of ord@f + 1. Let us define the polynomigly as

N+1

an @ =[] (= 4) 7

j=1

ande® = {eif:j =1,..., N+ 1}. Inthe theory of cardindl-splines the functiom 5: R x (C\
eM) — C (cf. [17, p. 223)) defined by

Ap(x, ) = 1/ L &
A 21 Jrga (z) eF — A ¢

is of fundamental importance. Hefeis a closed simple curve in the complex plane surrounding
all2;,j =1,..., N+ 1 and having the zeros of the functien— 4 in the exterior ofl". The
Euler—Frobenius functiors defined by

XZ

(8)

N+1

TA(x, 2) o= ApGe, ) - [ e = 2. 9)
j=1

Forx = 0 it is a polynomial of degree at mohtin the variabled (Corollary 2.1 in[17]) and
ITA (0, ) is called theEuler—Frobenius polynomiaNext we recall the definition of the so-called
basis spline which will be denoted Iy, : Define the function (1) := ]‘[;\’:11(6—/»_,- —A)and let
sj,j =0,..., N +1be the coefficients ofy (1), i.e.s5 (1) = YY1 s;//. Due to the choice of
the real numbes; it is straightforward to prove that the following cardirfaispline has support
in the intervall0, N + 1], namely

N+1

OA ()= Y 57+ Ay (x = j,0) - 1jo.00) (x) . (10)
j=0

The following fundamental formula relates the Euler—Frobenius function with the basis—spline
(cf. [17, p. 221 and 222]) for &x <1,

N

RA() =) N op(x+ )=
j=0

-V

Oty A, (11)
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3.1. The fundamentdl-spline

Let us now consider the interpolation problem for cardibalplines. A cardinalL-splineL
is calledfundamental-splineif L, (0) = 1andL, (j) = O0forallj € Z, j # 0 and if it decays
exponentially, i.e. if there exist two constamts B > 0 such that

LA (x)] <Ae Bl forallx € R. (12)
We cite the following result fronjl 7, Corollary 2.3].

Theorem 3. If A (0, —1) # 0then there exists a unique fundamental L-spline.

We now recall from{20, p. 271] the construction of the fundamental splingsince we need
a detailed knowledge of the constaAtandB in the estimate (12). Define

1 N
Pp (2) := R} (;) N=3"0000). (13)
j=0

The following result if17, Corollary 2.3] shows tha, has no zeros on the unit circle.

Proposition 4. The functionl/ Px (4) is holomorphic in a neighborhood of the unit circle if and
only if A, (0, —1) # 0.

Assume now that the functio—1/ Py (2) is holomorphic on the annulus {R |1] <R}
(whereR1 < 1 < R»), and consider its Laurent series
1 > ,
= A
Py = 2 O

J=—00

According to[20, p. 271] the fundamentdl-spline L 5 is given by
o
La() = Y @j0xE—j). (14)
j=—00
The series in (14) converges absolutely and locally uniformly. The estimate in the next proposi-
tion is straightforward using the Cauchy estimates for the coefficients of a Laurent series. The
somewhat technical proof is omitted.

Proposition 5. LetA = (41, ..., An+1). Suppose that/ P (4) is holomorphic on the annulus
{Ri < |/l <R}withRy <1 < Ro.Letp > OwithR; < p <1 < % < Rz and put

¢ = —log p > 0.Then there exists a consta@it(p) depending only op and N such that
Lp ()| <G max . max cemell
NE] (p)ye(O’NH) |OA (V)] p< 121 TPA D]
We mention that the same proof yields the inequality
m dm 1 | ‘
Lx ()| <G max |— - max — e 15
‘ S| <00 max |SDone]- max i (15)

foreachn =0,..., N — 1.
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3.2. Estimate omaxQ

In the following we want to give an estimate of the basis splihe and its derivatives, i.e.
we want to estimat ddx'fn [N (x)’ wherem satisfies Gm <N — 1. For this we define for given
= (A1, ..., Ay+1) the number

Mp :=max{|1l, ..., [Ans1l}

and forM, # 0 we put

m
Bp (m) := Z M* max. 1A imsa) 5 D1 (16)
k:O ~ ~

,,,,,

Recall thaty (2) = [TV (e% — ).

Note thatB, (0) = ma>@<x<1|A(A1 vi1) (x,1)| andBx(m) < Bp(m + 1).

Theorem 6. LetN € Ngando > Obe given. Then for evef<m < N — 1there exists a constant
C,, > 0,depending only otV ando, such that for allA = (41, ..., Ay+1) with the property that
le*i —1|=dforall j =1,..., N+ 1,the following inequality:

<Cpe —(a+- +/LN+1)Mm B (m) - [rp ()] (17)

‘_QA (x)
holds for allx € R.

Proof. Let us prove the claim at first for the case= 0: The basis splin@ 5 is non-negative
and it has support if0, N + 1]; for y € [0, N + 1] we can findj € {0, 1, ...;M} andx € [0, 1]
with y = x + j. Clearly

N
OA() <D Oalx+).

j=0
TakingA = 1 in formula (11), one obtains that

A (x, D)

, 1
O <GS = oy A D L (18)

Hence the claim is true forn = 0 whereCq = 1.

We proceed by induction over = 0,..., N — 1 and assume that the statement is true for
m<N —1.1f m = N — 1 we are done, so assume that< N — 1. We apply the induction
hypothesis toA = (41, ..., An+1) andAz = (41, ..., 4y) (note thatn <N — 2), hence for all
xeR

Cre~ (Rt +avs) it B (m) - [rp ()],

‘_QA ()| <

< CZe_(;Ll+...+/1N)M/r\n2 ’ BAz (m) - ’r/\z (l)‘ :

‘ T — 0, (%)
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In [7, p. 119] or [10, Part 11] one can find the formula

d
= Q(ninet) O = INF10 (1) ) €00 ) () (19)
+0Q0g.ay) ® =D
Differentiating the last equatiom times yields
m+1 m m
T OA ) = ANt Oy i) @) €000 ) ()

m
d m
The triangle inequality and our induction hypothesis show that

Q(/ll ) x—-1.

' dm+1

T O ()] < avaa] CoemBE AN MR By (m) - I (D))

(e N+ 4 1)Cze_(’11+"'+)'N)MK2 "By (m) - Iray (D]

NOWr(;VLM;VNH) (1) = (e’N+1 — 1)r(i1 ) (1) and|Ay 1] < Mq, andMZ2 <MY Thus

,,,,,

dm+1
‘ et tvan) ()] - ML €y,

deHQA (x)

where

1 (e~N+1 4 1)etN+1
Ca = | C1Ba (m) + Co7 = BA2 (m)

et — 1]

Further we have the trivial estimai, (m) < Bx (m + 1) and

m+1
— —(k=1)
B, (m =3 max, M Ay i) 06 D] SMABAGn+1).
The functionx — |(x +1)(x — 1)~1| is bounded ok \ [1— &, 1+ J]. Sincelei — 1|> ¢ for all
j=1,...,N+1, weinferCp <C3Bp(m + 1) whereCz depends only oN ands. The proof
is complete. [J

3.3. Symmetry properties

Let A = (A1,...,Ay+1) and define—A = (—41,...,—Anyy1). Forallx € Randl ¢
e U e~ U {0} the following identity (se¢l17, p. 213)):

Ap (l—x, %) = (DN A A, ) (20)

follows by a direct computation. As fd1] we call A nearly symmetriéf there exists € R and
a permutatiom of the set{1, ..., N+ 1} such that-4; = c + Ay for j =1,..., N+ 1, 0or
shortly —A = ¢ 4+ A. In the case = 0 we callA symmetricNote that forj € {1,..., N + 1}
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with 7 (j) = j one obtains thatc = Z; + Ar(j) = 24; and thereforel; = —1c. It follows that
it +ivaa=—3(N+Dec (21)
sincel; + An(j) = —cfor j =1,..., N+ 1. Asimple computation shows that for alle R and
J¢ehue MU0}
A_A(x, ) =¥ VAL (x, e7O). (22)

Combining Equation (20) and (22) one obtains

Proposition 7. LetA be nearly symmetric with respectda R. For all /. ¢ e Ue= U {0} and
all x € R the following equality:

1
Ap <1 —x, Z) = (—D)N eV, (x, 1e7) (23)
holds.
Similar computations lead to the following result (cf. Proposition [1i):

Proposition 8. Let A be nearly symmetric with respect ¢goe R. Then the polynomialPy (1)
defined in(13)is given by

PA(2) = (=1)N 2N - TIA (O, Je ™). (24)
4. Estimate of the function Ax (x, 1)

In this section we will give an estimate of the asymptotic behavior of the funetjgp, (x, 1)
for k — oo and O0<x < 1. This estimate will be used to prove the existence of an interpolation
polyspline for the case that = A (k) is of the form (4).

Assume that foreache Ngthe vectorA = A (k) = {41 (k), ..., An+1 (k)}is of the following
form: there exists € {1,..., N + 1} (independent ot € Np), pairwise different real numbers
Ci, ..., C,, and pairwise different numbet.11, ..., Cy+1, such that for alk € No we have
the equalities

—k+C; forj=1,...,r

/szij(k)z{k—i—cj' fij=r+1,...,N~|—l. (25)

Then for largek all /; (k) are pairwise differentfoj = 1,..., N + 1, consequently
N+1 1 8;'-/(k)x

M= : = (26)
jgl q;\(k) (/lj (k)) etk _ )

whereq}\(k) is the derivative of7p ). Let us splitA ) (x, 4) into a sum of two functions
i 1 er(k)x
ck (x,2) = —,
=t q//\ ()yj (k)) eti — ),
N+1 1 E)“j (x)x

dy (X,/I): Z 7 (;vj (k)) eflj _/1.

j=r+1 q/\
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Let K be a compact subset of the complex plane such tigakOand letd be a positive number.
Then it is easy to see that the sequende(x, 4))ien, With 4 € K and 0<x <1 — 6 is of
uniform exponential decaip the following sense: there exists a polynonfahnde > 0 such
that|dy (x, 2)| < |P (k)| -e ¢*forallk € Ng, all . € K, and all 0<x <1 — 9.

Let us define

e/lj (k)x

b = _
H0 =2 )

The following simple result tells us that the asymptoticidfy , (x, 4) for k — oo is the same
as ofby (x).

Proposition 9. DefineE (k, 2) := []/_;(¢%® — 1) and letK be a compact subset of the complex
plane not containin@ and let0 < 6 < 1. Then we can write

(="

AAN(X, 2) = B

br(x) + A fr(x, A), 27)

where i (x, A) is of uniform exponential decay ¢6, 1 — 6] and E (k, ) converges uniformly on
K to (=) #0.

Proof. Define E; (k, 2) = [1j_1x; (e’“(k) - i). ThenE; (k, 2) is a sum of sequences of
uniform exponential decay and the consteat)” L. Itis easy to see that

r e/lj (k)x

———Ej (k, A __/lr—lb
“ap (4 ) j (k) | = (=" b (o)

er (x, ) =

is of uniform exponential decay. Thus

e (x. ) 3 L=t
fulw, )= s e (6 2) = A (D) = pa

by (x) (28)
is of uniform exponential decay.(J
Theorem 10. Let A (k) be as in(25) and letK be a compact subset of the complex plane with

0 ¢ K. Then for eaclkh > 0 there exists a constam > 0 and a natural numbekg such that for
all k>kg, all A € K,and all0O<x <1 - ¢ the following estimate:

1
|AAw) (x. 2| <Dk—N (29)

holds. If there exists € R such thatA (k) is nearly symmetric with respectédor all k£ > kg then
the inequality is valid for alD< x < 1.

Proof. We may assume th#t is disjoint with ¢*® for largek. Lety (1) = €'’ for ¢ € [0, 27]
and definel’y (t) := —k + ky (t). Let ko € No be so large thafC;| < 3ko for all j =
1,..., N+ 1. Then for allk > kg the curvel; surroundsiy, ..., 2, but not, 1, ..., Ay41.
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By Cauchy’s Theorem
r Aix X
e’ 1 et
by (x) = N = —/ ——dz. (30)
jZ=1 qn ()»j) 2mi Jr, ga (2)

Note that|Z; — z| >k — ko> 3k for all zon the pattl and forallj = 1,..., N + 1. Clearly
le?*| <e*RE2) (assuming & x < 1) is bounded for e T';. Hence the standard estimate for line
integrals gives for a suitable constadt> 0 the inequality

1
b (0] <M 5k

for all 0<x <1 andk > ko. By (28) we have uniform exponential decay farfi (x, 2))xeng, I-€-
there exists a polynomid ande > 0 such that/ fi(x, 2)|< | P (k)| - e €% for all k € N, all

0<x<l-4,andallie K. Slncelg(k)}) converges uniformly to 1 it follows that for larde

A )] < E((k )))bk )

and (29) is proven for Qx <1 — 6.
For the second statement € := K U {1//1e" A€ K}andleto = 1 . Then there exists a
constantD > 0 such tha1AA(k) (x, M)| <D forall0<x<1-dand for ally € K1. Let now

<y<1and definex = 1— y. By Equatlon (23), (replacé by Ze¢¢ andx by y and note that
N +1=2p)

1 1 1 1
Ar(y, ) = e —O0=Deg (1 y, —C> = —e"Ap <x—>
lec le le le

HencelAp(y, 2)| < D2D 5 L forall 3 5 <y<1and the proof is complete.[]

1
+ | Afi (x, D] <2M +|P(k)|

Theorem 11. Let A (k) be as in(25) and letK be a compact subset of the complex plane with
0¢ K.If r < N + 1then there exist constan€s D > 0 and a natural numbekg such that for
all k>kpandalll € K:

1 . 1
Ck—N< |AAw) (0. 1) <Dk—N- (31)
Further the following inequality holds for all € (—o0, 0) N K and all k > ko;
=DV Apy(0, 2) > 0. (32)

Proof. Note that by (30)
e Rx@=p®) 4/ (1)

2n
Ko (X)Z%/o Mo (0 = ) T2 (-240 0 - )

Clearly the denominator of the integrand convergeg1))" (y (t) — 2)N+1=r For x = 0 the
nominator is trivially convergent and hence we see i, (0) converges to

_ 1 1
T o 2 (2 — 2)N+1—r

dt. (33)

dz.
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Sincey surrounds; = 0 but notz = 2 this value can be computed by residue theory (see e.qg.
Proposition 2.4 ir6, p. 113]) and we obtain
(_1)r—1+N

—N J— —_—
D 2Y(N+1—7r)...(N—1).

r =

It follows that there exist a constadt> 0 and an integeko such that(—1)" 1™V b, (0) >
C 7 forall k>ko:

Assume now thak C (—oo, 0). Since fork — oo we have% — 1 uniformly onKk,
there exists an integeéf such that for alk >k, and allZ € K:

CA (a0 > S 1

)
Ek. 1) 2N~

Since the sequenae f; (0, 4))xen, is Of uniform exponential decay there exists a polynorRial
and a numbes > 0 such thatl f; (0, 2)| < |P(k)| - e ¢* for all k € Ng and for allZ € K. Then
by (27) the following inequalities hold:

—1)"" N A0 (0, ) > (=4 —1) "N b (0) — |4 S (O, A
(=1 AAA (O, ) E(k,)v)( ) x (0) — |4 £k (0, )]
c1 1cC
>—— —|P ceEk > —
gy~ IP®IeTT >

for all sufficiently largek and for allZ € K. Since the seK contains only negative numbers we
obtain estimate (32) for all sufficiently large

Now assume thaf is a compact subset in the complex plaheThen similar arguments as
above show that for somig € No the inequalityliA 4 (0, 4)| > 75 holds for allZ € K, and for

alk>k,. O
5. Uniform estimates of fundamentalL-splines

In the rest of the paper we will assume thagk) is given by (4). We writel; (k) = —k + C;
forj=1,..., pwith

C1=2-n,Co=4-n,....Cp,=2p—n
andi; (k) =k+Cjforj=p+1,..., 2 with
Cpi1=0,Cpio=2,...,Cop =2p -2

HenceN + 1 = 2p and clearlyA (k) is nearly symmetriavith respect tac = n — 2p where
n € Np is the dimension of the underlying spage.

Theorem 12. Let A (k) be as in(4) and letK be a compact subset of the complex plane with
0 ¢ K. Then there exist a constam > 0 and an integeko such thatP ,(4) # 0for all k > ko
and for all 2 € K; further for all k > kq:

C (k) := . M. 34
(k) xg% O Ak (x) - max (34)

— <
AEK |PA(k)(;L)| =
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More generally for everym = 0, ..., 2p — 2 there exist a constan¥; > 0 and an integetk;
such that for alll € K and for all k > k1:
m 1
Cp (k) := max |— x)| - max—— < M1k™. 35
m () xe[0,1] | dx™ Qawm x) ek |PA(k) (;)| ! (33)

Proof. UsingN + 1 = 2p andc = n — 2p Proposition8 yields

Py (2) = (=1) 2N Apy (0, 2¢7) - rpqy (™€), (36)
wherer ) (4) = ﬂ?’;l(eif ®) _ 7). By Theorenil1 applied to the compact s€t°K := {¢~ 1 :
J € K} there exist€ > 0 andkg € No such thatl < [Ap (0, ie~¢)| - k?P~Lforall A € K and

for all k> ko. Thus by (36)P ) (4) # 0 for all A € K and for allk > ko and the first statement
is proven. Furthermore, we have obtained the estimate

1 ge_NC 2p—1 1 .
| PAgy (D]~ ClAI A (e )

In order to prove (34) we apply Theorem 6 with= 0, and obtain

|Qaw ()] < CemCattive) orgnyaglmf\(k) 0. D[ - [raw @]

Theoreml0 shows that there exist¥ > 0 such that

1
max x) < D12
e OAw () <Dz o1

Irag (D] .-
Hence we obtain for a suitable constdt (note that O¢ K) the inequality

C (k) <D 1 _
) 2lram O] rin:}(x |rAq) (Ae=)|

The proof is accomplished by the fact that

—_ . 2 .
A @ [Ti—y (79 = TLRZ, 4 (9 = 1)
rAaG) (Ae=€) 17y (e7++C = 2e—c) Hiip-l,—l (eF+Ci — Je)

converges uniformly fok — oo to
Theorems 6 and 10.00

ﬁ Estimate (35) follows in the same way using again

For the proof of our main result we need the following proposition which establishes an uniform
estimate of the type (12) of all fundamental splines for the operatgenerated by the vectors
A (k).

Proposition 13. For everyk € NgletA (k) be asin(4). Then there exists a fundamentakpline
LAy With respect to the operata¥l . Further there exist constant® > 0 ande > 0 such
that for all k € Ng and allv € R the following estimate holds:

|Lagy ()] <Me e, (37)
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Proof. At first we show thatd 5, (0, —1) # O for allk € No. The integral

1 1 1

A 0,-1) = — d
Awm ( ) 2ni /r g (2) e +1 <

(38)

can be computed by residue theory and it reduces to a rational expression which has a non-zero
denominator. For simplicity let us consider the case when the congtatsare pairwise distinct.
Then

2r 1 1

Apgy (0, =1) = | '
jz—:l q;\(k) (}7‘ (k)) e’ (k) +1

Obviously,q;\(k) ()Lj (k)) are integers. Let us assume thig{, (0, —1) = 0. After multiplying
by ]'[?’;1 (eif(") + 1) we arrive at an equation of the type

I
Z Pief =0,
i=1

here 8, are non-zero rationals ang are integers obtained by sums of some of the constants
Aj (k). Due to the special form of the constarits(k) provided in (4) at least one of thg is
non-zero. Thus we may apply the classical theorerhioflemannon transcendental numbers
which states that the above equality is impossible, see e.g. [15, p. 213] or [3, p. 6]. It follows that
A (0,-1) #0.

By Theorem 3 we can find for eadhe Ng a fundamentaL-spline L. R — R. Hence,
there exist constant®;, ande; such that for alb € R holds

|Lag) ()] < Mge 5L,

We have to show that the constas can be chosen as a bounded sequence, and similarly that
er=>eforallk e Ng.LetO < p < 1and putk := {1 € C: p<|4|<1/p}. Choose arbitrary*

with 0 < p* < pand putT := {1 € C: p* <|A|<1/p*}. By Theoreml2 applied to the compact
setT there exist%g € Ng such that

PAy(4) #0
forall 2 € T and for allk > ko. HenceP, is holomorphic on the open annulus given by the
radii Ry = p* < 1 < 1/p* = Ry for all k> kg. Again by Theoreni2 applied to the compact set
K there exist a constat* > 0 and a natural numbei > kg such that

C (k) := . M* 39
(k) Jé}&ﬁ O A (x) - max (39)

— <
reK |PA(k) (i)|

for all k> k1. Apply now Propositiorb with respect to all seta (k) with k >k;. It follows that
there exists a constau (p) (independent ok) such that the fundamentalsplinesL , , for
k > ki can be estimated by

(LA )] <G (p) C (k) e M <G (p) M*e™ 1",

where ¢* := —logp. Finally after putting M := max{M*, Mo, ..., My,—1} and
€ :=minfe*, o, ..., &, —1} the proof is complete. O
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6. The main result

At first we need some notations: assume that the fungfig®” ! — R be square-integrable
with respect to the surface measureon S"~1and define the usual scalar product

o)y = [, FOR 0

Recall thatYy ; (0), fork € Np,I = 1, ..., @ denotes an orthonormal basis of the spageof
all spherical harmonics with respectd6. For allk € Ng, andl = 1, ..., a; the Fourier-Laplace
coefficients off are given by

S 2=/ F(O)Yy1(0)do.
Snfl
By [23, Corollary 2.3] every square-integrable functibnan be expanded intdaurier—Laplace
seriesgiven by

o0 ag

FO =" fur YO, (40)

k=01=1

where convergence is understoodis(S" 1) with the norm
1A Lyt = A5 Py

For everyf € Lo(S"™1) define

oo dg

LAl =D | fea| - A+ K (41)

k=0 (=1

The subspace of af € La(S"™1) with || f]|, < oo is denoted by *1(S"1), see [1].
By [21], for all Y} € H; we have the inequality

1Y (0)] < KKy, Ly forde st 1.
Since||Yk,1(0)||L2(§,171) = 1 we obtain the estimate

oo ag o0 Ak

DO il [ 0| <K YD | ] A+kzt=kK 1Al - (42)

k=0 1=1 k=0 1=1

It follows that a functionf € H2 11(S"1) possesses an absolutely uniformly convergent
Fourier—Laplace series.
Using some standard techniques (see[8]yone can prove the following criterion:

Proposition 14. Assume thay: S"~! — R is a 2¢-continuously differentiable function where
29>2(p—1) +2[%]. Thenf e H*Y(S" Y fors =2(p — 1) + (n/2) — 1.
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6.1. Construction of fundamental polysplines

As in the one-dimensional case we show at first the existence of “fundamental polysplines” in
the following sense:

Definition 15. A fundamental polysplineL;:R" \ {0} — R for the data function

f:8"1 — C is the polyspline of orderp such that for eachj € Z the interpolation
conditions

L;(e/0)=0  forallj #0andfeS" 2

Ly (e/0) = f(0) for j=0andall) € S"* (43)
hold, as well as the following growth condition:
|L; r0)| <Me*9"! forallr > 0andd € S" . (44)

The next result ensures the existence of fundamental polysplines for a large class of data
functions.

Theorem 16. Lets = s, , = 2(p — 1) + (n/2) — 1. Then there exist constang > 0 and
& > Owith the following propertyfor eachf € H*1(S"1) there exists a polyspling of order
p such that(43) holds and

am _

‘dr—mD“Lf(re) <Me=e100rT ) (45)
forallm e Ngpando = (o1, ..., %,-1) € Ng_l satisfying the conditiom + || <2p — 2; here
D% denotes the differential operator

o Oy —

D% = a_l . o

07 o0y

Proof. LetL, denote the fundamental cardidakpline with respectto the differential operator
M- Now using the Fourier—Laplace series fofve want to define a fundamental polyspline
Ly by

oo ag

Li(r0) =YY" frir Lag (0gr) - Yei(0). (46)

k=0 I=1
The series converges absolutely and uniformly since by (37) and (42) we have the estimate:

o0 ag

|Ly(r0)| <MeeMo9] ZZ | fiea| |Yea(0)| <K 1l -1 (47)

k=01=1

FurthermoreL  is polyharmonic on each annulus A(e/t1) since each summang p )
(log r) - Yx; (8) is according to the results in Section 2 polyharmonic of opdand the uniform
limit of such functions is again polyharmonic of order

SinceL ) (0) = 1andL g, (j) =0, forall j € Z, j # 0, we conclude that  interpolates
the given datgf, i.e. (43) holds.
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We want to prove that the partial derivativestof> L ¢ (r0) andr — L (r0) exist up to the
order 2(p — 1). It suffices to prove the uniform convergence of the series

00 ag an
D> fiar oL (0g 1) - D*Yiy(0) (48)
k=01=1

form + |o| <2p — 2. By formula (5), and Theorem 12, there exist constaits 0 ande > 0
andko € N such that for alk > kg holds

< Ckme—s\logrl.

dm
‘WLA(k) (log r)
By [22], or [21], there eXists a constakit > 0 independent ok such that for ally; € Hy, and
for all & € Np with o] <N :=2(p — 1) — m, the following estimate holds:
|D*Y (0)] <K - kP71 O], 01, -

Applying the last inequality tds.;(0) (note that| Yx ()], g1, = 1) we obtain that for all
o€ N’é_lwith o] <N :=2(p—1) —m:

o ak

dln
55 i+ L Ly og ) D110
k=0[=1
o0 ag
SCKe™ 09N N fig) - kM g O/D7LEN
k=0 (=1
00 ag
= CKE_SHOQM Z Z ‘fk,l’ k=D | /-1
k=0[=1

Since||f||spn < oo we conclude thaL ¢ (r0) is differentiable up to the order( — 1) and (45)
holds. O

6.2. Construction of interpolation polysplines

Now let us construct interpolation polysplines. Assume thatare data functions defined on
the spheres’/S" 1. Then we putf; (0) :=d; (el 0), consequentlyf; is a function on the sphere
st

Theorem 17. Lety>0ands =s,, =2(p — D+ (n/2) —landf; € HL(s" Y for j e Z.
Suppose that there exists a const@nt 0 such that the inequality

17, <C|j|V:C’Iog ef(” (49)
holds for all j € Z. Then there exists a polysplife R" \ {0} — R of order p such that
S(el0) = fj(0) =d;j(e’0) forall 6 e S"?
holds for eachj € Z, and there exists a constaft > 0 such that for alll € S" tand allr > 0:

IS (r0)| <D|logr|”.
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Proof. The following well-known fact can be found, e.g.[t8]: Lety>0 ands > 0. Then there
existsD (g,7) > 0 andRgp > 0 such that for alk € R with |x| > Rg the following inequality
holds:

o
> 1l e <D e,y x ) (50)
j==00
For eachf; we can define a fundamental polysplibg; as in Theoreni6. We define the inter-
polation polyspline by putting

o0

Sx):= Z Lf/. (xe_j) .

j=—00

Estimate (45) yield$L 7, (xe~/)| < Me~¢I°9x</llj ;,, hence by (49) and (50} it follows

o0
IS@I< Y. mceelodkell 17 <CMD (e, 7) log |7

j==c0

This shows thas is well-defined and since the convergence is locally uniform it is clearstisat
continuous oriR” \ {0} and polyharmonic on the open annalie’, ef+1) forj e 7.

The differentiability ofS up to order 2 p — 1) follows from similar estimates using inequality
(45). Then

o0
_ el
< > memeloarely gy,

j==00

'S} am '
) ‘WD“LJ; (r6e”)

j=—00

This ends the proof. [J
7. Unigueness of interpolation polysplines
In this section we will prove uniqueness of interpolation polysplines.
Theorem 18. Lety>0. Supposées, S2 : R” \ {0} — C be polysplines of ordep such that
1Si (r®)] <C (|log r|”)
fori =1,2.1f Sy (e/0) = S (e/0) forall j € Z and for all) € S"~* thensSy = S».

Proof. Letus putS := S1 — S». Let S (log r), with v = log r, be the Fourier—Laplace coeffi-
cients ofS as defined in (6). According to TheoremS2,; (v) are cardinalL-splines with respect
to the linear differential operata¥/,, and clearlyS; (j) = O for all j € Z. Further, by the
assumption of the Theorem we see that fowadl R inequality

Sk ()] < _/;H |S("0)Yx1(0)| dO< Cyyllog e’ = Ciy ||
holds with some constantg,; > 0. HenceS; ; is a cardinalL-spline of polynomial growth. By

the uniqueness for interpolation cardidakplines (se¢l6, p. 204] applied fos. = 0) we infer
that Sk ; = 0. This implies S= 0 and finishes the proof.]
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