Cardinal interpolation with polysplines on annuli

O. Kounchev ${ }^{\mathrm{a}, *, 1}$, H. Render ${ }^{\mathrm{b}, 2}$
${ }^{\mathrm{a}}$ Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 Acad. G. Bonchev St., 1113 Sofia, Bulgaria
${ }^{\mathrm{b}}$ Departamento de Matemáticas y Computación, Universidad de La Rioja, Edificio Vives, Luis de Ulloa s/n., 26004 Logroño, Spain

Received 5 September 2003; accepted 3 August 2005
Communicated by Robert Schaback
Available online 26 September 2005

Abstract

Cardinal polysplines of order p on annuli are functions in $C^{2 p-2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ which are piecewise polyharmonic of order p such that $\Delta^{p-1} S$ may have discontinuities on spheres in \mathbb{R}^{n}, centered at the origin and having radii of the form $e^{j}, j \in \mathbb{Z}$. The main result is an interpolation theorem for cardinal polysplines where the data are given by sufficiently smooth functions on the spheres of radius e^{j} and center 0 obeying a certain growth condition in $|j|$. This result can be considered as an analogue of the famous interpolation theorem of Schoenberg for cardinal splines.

© 2005 Elsevier Inc. All rights reserved.
MSC: primary 41A15; secondary 35J40; 31B30

Keywords: Cardinal splines; Schoenberg interpolation theorems; L-splines; Cardinal spline interpolation; Spherical harmonics; Polyharmonic functions in annulus; Biharmonic functions; Polysplines

1. Introduction

Polysplines have been introduced by the first author as a multivariate analog of splines in one variable, see e.g. [9]. In the monograph [10] applications of polysplines to Multiresolution Analysis and Wavelet Analysis in the spirit of the work of Chui (see [5]) have been given. In this

[^0]paper an interpolation result for cardinal polysplines on annuli (defined below) will be presented which is motivated by the work of Schoenberg on cardinal spline interpolation, see [19].

Let p and n be natural numbers which are fixed throughout the paper and let \mathbb{R}^{n} be the n dimensional Euclidean space and \mathbb{Z} the set of all integers. As in [11-13] a function $S: \mathbb{R}^{n} \backslash$ $\{0\} \rightarrow \mathbb{C}$ is called a cardinal polyspline of order p on annuli if S is $(2 p-2)$-times continuously differentiable and the restriction of S to each open annulus

$$
A_{j}:=\left\{x \in \mathbb{R}^{n}: e^{j}<|x|<e^{j+1}\right\}
$$

is a polyharmonic function of order p for $j \in \mathbb{Z}$. Recall that a function f defined on an open set U in \mathbb{R}^{n} is polyharmonic of order p if f is $2 p$-times continuously differentiable and $\Delta^{p} f(x)=0$ for all $x \in U$ where Δ is the Laplace operator and Δ^{p} its p th iterate. It is well known that a polyharmonic function is real analytic, hence infinitely differentiable. Hence after differentiating a polyspline $(2 p-2)$ times one may have discontinuities only on the spheres $e^{j} \mathbb{S}^{n-1}=\left\{e^{j} y\right.$: $\left.y \in \mathbb{S}^{n-1}\right\}$ with $j \in \mathbb{Z}$, where

$$
\mathbb{S}^{n-1}=\left\{y \in \mathbb{R}^{n}:|y|=1\right\}
$$

is the unit sphere. So one may see the spheres $e^{j} \mathbb{S}^{n-1}, j \in \mathbb{Z}$, as the multivariate analog of the notion of the knots $j \in \mathbb{Z}$ of a cardinal spline in the univariate case. Later it will become clear why these radii are of the form $e^{j}, j \in \mathbb{Z}$.

Schoenberg's famous interpolation theorem for cardinal splines of odd degree says that for data given on the knots $j \in \mathbb{Z}$ of polynomial growth in $j \in \mathbb{Z}$ there exists a cardinal spline interpolating the data which is of the same polynomial growth on the real line, see [19, p. 34]. The aim of this paper is to present an analog of Schoenberg's result for polysplines in the following way: the data are given by functions $d_{j}: e^{j} \mathbb{S}^{n-1} \rightarrow \mathbb{C}$ for $j \in \mathbb{Z}$ and we want to find a polyspline $S: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{C}$ which interpolates the data, i.e. that

$$
\begin{equation*}
S(y)=d_{j}(y) \text { for all } y \in e^{j} \mathbb{S}^{n-1} \text { and } j \in \mathbb{Z} \tag{1}
\end{equation*}
$$

and which has a similar growth as the data. Clearly we have to assume that the data functions d_{j} are at least $(2 p-2)$ times continuously differentiable. It turns out that the results are naturally formulated in the context of the Sobolev spaces $H^{s, 1}\left(\mathbb{S}^{n-1}\right)$ for appropriate $s>0$, for details see Section 6.

Our main result states the following: Let $\gamma \geqslant 0$ be fixed; for $s=s_{p, n}=2(p-1)+(n / 2)-1$ and $f_{j} \in H^{s, 1}\left(\mathbb{S}^{n-1}\right), j \in \mathbb{Z}$, define functions $d_{j}: e^{j} \mathbb{S}^{n-1} \rightarrow \mathbb{C}$ by $d_{j}\left(e^{j} \theta\right)=f_{j}(\theta)$ for $\theta \in \mathbb{S}^{n-1}$. Assume that the data functions obey the growth condition

$$
\left\|f_{j}\right\|_{s} \leqslant C\left|\log e^{j}\right|^{\gamma} \quad \text { for all } j \in \mathbb{Z}
$$

Then there exists a polyspline S of order p interpolating the data functions d_{j} (i.e. (1)) and satisfying the estimate

$$
|S(x)| \leqslant D|\log | x| |^{\gamma} \quad \text { for all } x \in \mathbb{R}^{n} .
$$

In order to explain the construction of S recall that a function $u: \mathbb{R} \rightarrow \mathbb{R}$ is a cardinalL-spline (here L stands for a linear differential operator with constant coefficients of degree $N+1$) if u is $(N-1)$-times continuously differentiable and if for every $l \in \mathbb{Z}$ there exists an infinitely differentiable function $f_{l}: \mathbb{R} \rightarrow \mathbb{C}$ with $L f=0$ such that $u(t)=f_{l}(t)$ for all $t \in(l,(l+1))$. The essence of our construction involves writing the Laplacian in spherical coordinates, expanding
the polyspline S in a series of spherical harmonics, and, using the Micchelli theory of cardinal L-splines, glueing the radial part together to get S; roughly speaking, this means that a polyspline can be written in the form

$$
S(x)=\sum_{k=0}^{\infty} \sum_{l=1}^{a_{k}} S_{k, l}(\log |x|) Y_{k, l}\left(\frac{x}{|x|}\right)
$$

where $Y_{k, l}, k=0,1, \ldots, l=1, \ldots, a_{k}$, is a basis for the set of all spherical harmonics and the coefficients $S_{k, l}$ are L-splines with respect to the linear differential operator $M_{\Lambda(k)}$ defined in (3). In order to achieve convergence of the sum one needs precise estimates for the fundamental L-splines taking into account their dependence on the parameter k.

The paper is structured as follows: Section 2 gives some basic facts about polysplines and spherical harmonics in order to clarify the connection between polysplines and L-splines. In Section 3 we give a brief account of the theory of Micchelli who has generalized in $[16,17]$ the results of Schoenberg on polynomial splines to the setting of L-splines.

In Section 4 we discuss asymptotic estimates of the Euler-Frobenius function (defined in Section 3) depending on the parameter $k \in \mathbb{N}_{0}$. In Section 5 , we use these asymptotics to obtain uniform estimates of fundamental L-splines containing the parameter k. Section 6 contains our main result. Uniqueness of the interpolation splines will be shown in the last section. In the references [4] and [14] the reader will find recent developments of "interpolation polysplines on strips", where the interpolation data lie on parallel hyperplanes.

2. Spherical harmonics and polysplines

Each $x \in \mathbb{R}^{n}$ will be written in spherical coordinates $x=r \theta$ with $r \geqslant 0$ and $\theta \in \mathbb{S}^{n-1}:=\{x \in$ $\left.\mathbb{R}^{n}:|x|=1\right\}$. Recall that a function $Y: \mathbb{S}^{n-1} \rightarrow \mathbb{C}$ is a spherical harmonic of degree $k \in \mathbb{N}_{0}$ if there exists a homogeneous harmonic polynomial $P(x)$ of degree k such that $P(\theta)=Y(\theta)$ for all $\theta \in \mathbb{S}^{n-1}$. By a_{k} we will denote the dimension of the vector space \mathcal{H}_{k} of all spherical harmonics of degree exactly k. By $Y_{k, l}(\theta), l=1, \ldots, a_{k}$ we will denote an orthonormal basis of the space \mathcal{H}_{k} endowed with the scalar product

$$
\int_{\mathbb{S}^{n-1}} f(\theta) \overline{g(\theta)} d \theta
$$

For the reader not familiar with spherical harmonics, it might be useful to consider the twodimensional case: identify \mathbb{S}^{1} with $[0,2 \pi)$ and choose as a basis $Y_{0}=\frac{1}{\sqrt{2 \pi}}$ and

$$
Y_{k, 1}(t)=\frac{1}{\sqrt{\pi}} \cos k t \text { and } Y_{k, 2}(t)=\frac{1}{\sqrt{\pi}} \sin k t .
$$

For a detailed account we refer to [23] or [2].
Let $R_{1}<R_{2}$ be positive real numbers and let $\left(R_{1}, R_{2}\right)$ be the open interval $\left\{r \in \mathbb{R}: R_{1}<\right.$ $\left.r<R_{2}\right\}$. Assume that $u:\left(R_{1}, R_{2}\right) \rightarrow \mathbb{C}$ be infinitely differentiable and $Y_{k} \in \mathcal{H}_{k}$. Then it is well known (see e.g. [10, p. 152]) that $\Delta\left(u(r) Y_{k}(\theta)\right)=Y_{k}(\theta) L_{(k)} u(r)$ where

$$
\begin{equation*}
L_{(k)}=\frac{d^{2}}{d r^{2}}+\frac{n-1}{r} \frac{d}{d r}-\frac{k(k+n-2)}{r^{2}} . \tag{2}
\end{equation*}
$$

By iteration we have $\Delta^{p} u=Y_{k}(\theta) \cdot\left[L_{(k)}\right]^{p} u(r)$. Thus the function $u(r, \theta)=u(r) Y_{k}(\theta)$ is polyharmonic of order p if and only if $\left[L_{(k)}\right]^{p} u(r)=0$ for all $r \in\left(R_{1}, R_{2}\right)$.

Let us put for convenience

$$
\begin{aligned}
& \Lambda_{+}(k):=\{k, k+2, \ldots, k+2 p-2\} \\
& \Lambda_{-}(k):=\{-k-n+2,-k-n+4, \ldots,-k-n+2 p\} .
\end{aligned}
$$

The space of solutions of the equation $L_{(k)}^{p} f(r)=0$ which are C^{∞} for $r>0$ is generated by a simple basis: for $j \in \Lambda_{+}(k) \cup \Lambda_{-}(k)$ the function r^{j} is clearly a solution, while for $j \in \Lambda_{+}(k) \cap \Lambda_{-}(k)$ we obtain a second solution $r^{j} \log r$. It will be convenient to make a transform $v=\log r$. Then a solution of the form r^{j} will be transformed to $e^{j v}$ and a solution of the form $r^{j} \log r$ is transformed to $v e^{j v}$. We see immediately that all solutions to the equation $L_{(k)}^{p} f(r)=0$ are transformed to solutions of the equation $M_{\Lambda(k)} g(v)=0$ where $M_{\Lambda(k)}$ is the constant coefficient linear differential operator defined by

$$
\begin{equation*}
M_{\Lambda(k)}:=\prod_{\lambda \in \Lambda_{+}(k)}\left(\frac{d}{d v}-\lambda\right) \prod_{\lambda \in \Lambda_{-}(k)}\left(\frac{d}{d v}-\lambda\right) \tag{3}
\end{equation*}
$$

Later we shall also use the notation

$$
\begin{equation*}
\Lambda(k)=(k, \ldots, k+2 p-2,-k-n+2, \ldots,-k-n+2 p) \tag{4}
\end{equation*}
$$

which is a vector taking all values from $\Lambda_{+}(k)$ and $\Lambda_{-}(k)$ (including multiplicities). From this we have immediately

Proposition 1. Let N be a natural number and suppose that $S_{k, l}: \mathbb{R} \rightarrow \mathbb{C}$ are cardinal L-splines with respect to the differential operator $M_{\Lambda(k)}$ for $k=0, \ldots, N, l=1, \ldots, a_{k}$. Then the function $S: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{C}$ defined for $x=r \theta$ with $r>0$ and $\theta \in \mathbb{S}^{n-1}$ by

$$
S(r \theta)=\sum_{k=0}^{N} \sum_{l=1}^{a_{k}} S_{k, l}(\log r) Y_{k, l}(\theta)
$$

is a cardinal polyspline of order p.
It might be a temptation to say that cardinal polysplines are just the functions of the form

$$
\begin{equation*}
S(r \theta)=\sum_{k=0}^{\infty} \sum_{l=1}^{a_{k}} S_{k, l}(\log r) Y_{k, l}(\theta) \tag{5}
\end{equation*}
$$

where $S_{k, l}$ are L-splines with respect to $M_{\Lambda(k)}$; however, one has to be careful since the convergence of the sum has to be justified and the differentiability of the function S defined in (5) up to the order $2 p-2$ is not a consequence of the absolute convergence of the sum.

On the other hand, we mention the following result in [12] which will be used in the last section to prove uniqueness of interpolation with polysplines.

Theorem 2. Let $S: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{C}$ be a cardinal polyspline of order p. Then the function $S_{k, l}: \mathbb{R} \rightarrow \mathbb{C}$ defined by

$$
\begin{equation*}
S_{k, l}(v):=\int_{\mathbb{S}^{n-1}} S\left(e^{v} \theta\right) Y_{k, l}(\theta) d \theta \tag{6}
\end{equation*}
$$

is a cardinal L-spline with respect to $M_{\Lambda(k)}$ for $k \in \mathbb{N}_{0}, l=1, \ldots, a_{k}$.

3. Cardinal L-splines

The previous section has shown that polysplines are intimately related to a sequence of L-splines given by the Fourier coefficients of the polysplines.

Micchelli has worked out in $[16,17]$ a theory of cardinal L-splines with respect to a linear differential operator L (of order $N+1$) with constant coefficients. As in [16] $\Lambda:=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N+1}\right)$ denotes an (unordered) vector with repetitions according to the multiplicities with real coefficients $\lambda_{j}, j=1, \ldots, N+1$. Then L defined by

$$
L:=\prod_{j=1}^{N+1}\left(\frac{d}{d x}-\lambda_{j}\right)
$$

is a linear differential operator of order $N+1$. Let us define the polynomial q_{Λ} as

$$
\begin{equation*}
q_{\Lambda}(z):=\prod_{j=1}^{N+1}\left(z-\lambda_{j}\right) \tag{7}
\end{equation*}
$$

and $e^{\Lambda}=\left\{e^{\lambda_{j}}: j=1, \ldots, N+1\right\}$. In the theory of cardinal L-splines the function $A_{\Lambda}: \mathbb{R} \times(\mathbb{C} \backslash$ $\left.e^{\Lambda}\right) \rightarrow \mathbb{C}(\mathrm{cf} .[17, \mathrm{p} .223])$ defined by

$$
\begin{equation*}
A_{\Lambda}(x, \lambda)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{1}{q_{\Lambda}(z)} \frac{e^{x z}}{e^{z}-\lambda} d z \tag{8}
\end{equation*}
$$

is of fundamental importance. Here Γ is a closed simple curve in the complex plane surrounding all $\lambda_{j}, j=1, \ldots, N+1$ and having the zeros of the function $e^{z}-\lambda$ in the exterior of Γ. The Euler-Frobenius function is defined by

$$
\begin{equation*}
\Pi_{\Lambda}(x, \lambda):=A_{\Lambda}(x, \lambda) \cdot \prod_{j=1}^{N+1}\left(e^{\lambda_{j}}-\lambda\right) \tag{9}
\end{equation*}
$$

For $x=0$ it is a polynomial of degree at most N in the variable λ (Corollary 2.1 in [17]) and $\Pi_{\Lambda}(0, \lambda)$ is called the Euler-Frobenius polynomial. Next we recall the definition of the so-called basis spline which will be denoted by Q_{Λ} : Define the function $s_{\Lambda}(\lambda):=\prod_{j=1}^{N+1}\left(e^{-\lambda_{j}}-\lambda\right)$ and let $s_{j}, j=0, \ldots, N+1$ be the coefficients of $s_{\Lambda}(\lambda)$, i.e. $s_{\Lambda}(\lambda)=\sum_{j=0}^{N+1} s_{j} \lambda^{j}$. Due to the choice of the real number s_{j} it is straightforward to prove that the following cardinal L-spline has support in the interval $[0, N+1]$, namely

$$
\begin{equation*}
Q_{\Lambda}(x):=\sum_{j=0}^{N+1} s_{j} \cdot A_{\Lambda}(x-j, 0) \cdot 1_{[0, \infty)}(x) \tag{10}
\end{equation*}
$$

The following fundamental formula relates the Euler-Frobenius function with the basis-spline (cf. [17, p. 221 and 222]) for $0 \leqslant x \leqslant 1$,

$$
\begin{equation*}
R_{\Lambda}^{x}(\lambda):=\sum_{j=0}^{N} \lambda^{N-j} Q_{\Lambda}(x+j)=\frac{(-1)^{N}}{e^{\left(\lambda_{1}+\cdots+\lambda_{N+1}\right)}} \cdot \Pi_{\Lambda}(x, \lambda) \tag{11}
\end{equation*}
$$

3.1. The fundamental L-spline

Let us now consider the interpolation problem for cardinal L-splines. A cardinal L-spline L_{Λ} is called fundamental L-spline if $L_{\Lambda}(0)=1$ and $L_{\Lambda}(j)=0$ for all $j \in \mathbb{Z}, j \neq 0$ and if it decays exponentially, i.e. if there exist two constants $A, B>0$ such that

$$
\begin{equation*}
\left|L_{\Lambda}(x)\right| \leqslant A e^{-B|x|} \quad \text { for all } x \in \mathbb{R} \tag{12}
\end{equation*}
$$

We cite the following result from [17, Corollary 2.3].
Theorem 3. If $A_{\Lambda}(0,-1) \neq 0$ then there exists a unique fundamental L-spline.
We now recall from [20, p. 271] the construction of the fundamental spline L_{Λ} since we need a detailed knowledge of the constants A and B in the estimate (12). Define

$$
\begin{equation*}
P_{\Lambda}(\lambda):=R_{\Lambda}^{0}\left(\frac{1}{\lambda}\right) \lambda^{N}=\sum_{j=0}^{N} \lambda^{j} Q_{\Lambda}(j) \tag{13}
\end{equation*}
$$

The following result in [17, Corollary 2.3] shows that P_{Λ} has no zeros on the unit circle.
Proposition 4. The function $1 / P_{\Lambda}(\lambda)$ is holomorphic in a neighborhood of the unit circle if and only if $A_{\Lambda}(0,-1) \neq 0$.

Assume now that the function $\lambda \rightarrow 1 / P_{\Lambda}(\lambda)$ is holomorphic on the annulus $\left\{R_{1}<|\lambda|<R_{2}\right\}$ (where $R_{1}<1<R_{2}$), and consider its Laurent series

$$
\frac{1}{P_{\Lambda}(\lambda)}=\sum_{j=-\infty}^{\infty} \omega_{j} \lambda^{j}
$$

According to [20, p. 271] the fundamental L-spline L_{Λ} is given by

$$
\begin{equation*}
L_{\Lambda}(x):=\sum_{j=-\infty}^{\infty} \omega_{j} Q_{\Lambda}(x-j) \tag{14}
\end{equation*}
$$

The series in (14) converges absolutely and locally uniformly. The estimate in the next proposition is straightforward using the Cauchy estimates for the coefficients of a Laurent series. The somewhat technical proof is omitted.

Proposition 5. Let $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{N+1}\right)$. Suppose that $1 / P_{\Lambda}(\lambda)$ is holomorphic on the annulus $\left\{R_{1}<|\lambda|<R_{2}\right\}$ with $R_{1}<1<R_{2}$. Let $\rho>0$ with $R_{1}<\rho<1<\frac{1}{\rho}<R_{2}$ and put $\varepsilon=-\log \rho>0$. Then there exists a constant $G(\rho)$ depending only on ρ and N such that

$$
\left|L_{\Lambda}(x)\right| \leqslant G(\rho) \max _{y \in(0, N+1)}\left|Q_{\Lambda}(y)\right| \cdot \max _{\rho \leqslant|\lambda| \leqslant 1 / \rho} \frac{1}{\left|P_{\Lambda}(\lambda)\right|} \cdot e^{-\varepsilon|x|}
$$

We mention that the same proof yields the inequality

$$
\begin{equation*}
\left|\frac{d^{m}}{d x^{m}} L_{\Lambda}(x)\right| \leqslant G(\rho) \max _{y \in(0, N+1)}\left|\frac{d^{m}}{d y^{m}} Q_{\Lambda}(y)\right| \cdot \max _{\rho \leqslant|\lambda| \leqslant 1 / \rho} \frac{1}{\left|P_{\Lambda}(\lambda)\right|} \cdot e^{-\varepsilon|x|} \tag{15}
\end{equation*}
$$

for each $m=0, \ldots, N-1$.

3.2. Estimate of $\max Q_{\Lambda}$

In the following we want to give an estimate of the basis spline Q_{Λ} and its derivatives, i.e. we want to estimate $\left|\frac{d^{m}}{d x^{m}} Q_{\Lambda}(x)\right|$ where m satisfies $0 \leqslant m \leqslant N-1$. For this we define for given $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{N+1}\right)$ the number

$$
M_{\Lambda}:=\max \left\{\left|\lambda_{1}\right|, \ldots,\left|\lambda_{N+1}\right|\right\}
$$

and for $M_{\Lambda} \neq 0$ we put

$$
\begin{equation*}
B_{\Lambda}(m):=\sum_{k=0}^{m} M_{\Lambda}^{-k} \max _{0 \leqslant x \leqslant 1}\left|A_{\left(\lambda_{1}, \ldots, \lambda_{N+1-k}\right)}(x, 1)\right| . \tag{16}
\end{equation*}
$$

Note that $B_{\Lambda}(0)=\max _{0 \leqslant x \leqslant 1}\left|A_{\left(\lambda_{1}, \ldots, \lambda_{N+1}\right)}(x, 1)\right|$ and $B_{\Lambda}(m) \leqslant B_{\Lambda}(m+1)$.
Recall that $r_{\Lambda}(\lambda)=\prod_{j=1}^{N+1}\left(e^{\lambda_{j}}-\lambda\right)$.
Theorem 6. Let $N \in \mathbb{N}_{0}$ and $\delta>0$ be given. Then for every $0 \leqslant m \leqslant N-1$ there exists a constant $C_{m}>0$, depending only on N and δ, such that for all $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{N+1}\right)$ with the property that $\left|e^{\lambda_{j}}-1\right| \geqslant \delta$ for all $j=1, \ldots, N+1$, the following inequality:

$$
\begin{equation*}
\left|\frac{d^{m}}{d x^{m}} Q_{\Lambda}(x)\right| \leqslant C_{m} e^{-\left(\lambda_{1}+\cdots+\lambda_{N+1}\right)} M_{\Lambda}^{m} \cdot B_{\Lambda}(m) \cdot\left|r_{\Lambda}(1)\right| \tag{17}
\end{equation*}
$$

holds for all $x \in \mathbb{R}$.
Proof. Let us prove the claim at first for the case $m=0$: The basis spline Q_{Λ} is non-negative and it has support in $[0, N+1]$; for $y \in[0, N+1]$ we can find $j \in\{0,1, \ldots ; M\}$ and $x \in[0,1]$ with $y=x+j$. Clearly

$$
Q_{\Lambda}(y) \leqslant \sum_{j=0}^{N} Q_{\Lambda}(x+j)
$$

Taking $\lambda=1$ in formula (11), one obtains that

$$
\begin{equation*}
Q_{\Lambda}(y) \leqslant \frac{\left|\Pi_{\Lambda}(x, 1)\right|}{e^{\left(\lambda_{1}+\cdots+\lambda_{N+1}\right)}}=\frac{1}{e^{\left(\lambda_{1}+\cdots+\lambda_{N+1}\right)}}\left|A_{\Lambda}(x, 1) \cdot r_{\Lambda}(1)\right| . \tag{18}
\end{equation*}
$$

Hence the claim is true for $m=0$ where $C_{0}=1$.
We proceed by induction over $m=0, \ldots, N-1$ and assume that the statement is true for $m \leqslant N-1$. If $m=N-1$ we are done, so assume that $m<N-1$. We apply the induction hypothesis to $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{N+1}\right)$ and $\Lambda_{2}=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ (note that $m \leqslant N-2$), hence for all $x \in \mathbb{R}$

$$
\begin{aligned}
\left|\frac{d^{m}}{d x^{m}} Q_{\Lambda}(x)\right| & \leqslant C_{1} e^{-\left(\lambda_{1}+\cdots+\lambda_{N+1}\right)} M_{\Lambda}^{m} \cdot B_{\Lambda}(m) \cdot\left|r_{\Lambda}(1)\right|, \\
\left|\frac{d^{m}}{d x^{m}} Q_{\Lambda_{2}}(x)\right| & \leqslant C_{2} e^{-\left(\lambda_{1}+\cdots+\lambda_{N}\right)} M_{\Lambda_{2}}^{m} \cdot B_{\Lambda_{2}}(m) \cdot\left|r_{\Lambda_{2}}(1)\right| .
\end{aligned}
$$

In [7, p. 119] or [10, Part II] one can find the formula

$$
\begin{align*}
\frac{d}{d x} Q_{\left(\lambda_{1}, \ldots, \lambda_{N+1}\right)}(x)= & \lambda_{N+1} Q_{\left(\lambda_{1}, \ldots, \lambda_{N+1}\right)}(x)+e^{-\lambda_{N+1}} Q_{\left(\lambda_{1}, \ldots, \lambda_{N}\right)}(x) \tag{19}\\
& +Q_{\left(\lambda_{1}, \ldots, \lambda_{N}\right)}(x-1)
\end{align*}
$$

Differentiating the last equation m times yields

$$
\begin{aligned}
\frac{d^{m+1}}{d x^{m+1}} Q_{\Lambda}(x)= & \lambda_{N+1} \frac{d^{m}}{d x^{m}} Q_{\left(\lambda_{1}, \ldots, \lambda_{N+1}\right)}(x)+e^{-\lambda_{N+1}} \frac{d^{m}}{d x^{m}} Q_{\left(\lambda_{1}, \ldots, \lambda_{N}\right)}(x) \\
& +\frac{d^{m}}{d x^{m}} Q_{\left(\lambda_{1}, \ldots, \lambda_{N}\right)}(x-1)
\end{aligned}
$$

The triangle inequality and our induction hypothesis show that

$$
\begin{aligned}
\left|\frac{d^{m+1}}{d x^{m+1}} Q_{\Lambda}(x)\right| \leqslant & \left|\lambda_{N+1}\right| C_{1} e^{-\left(\lambda_{1}+\cdots+\lambda_{N+1}\right)} M_{\Lambda}^{m} \cdot B_{\Lambda}(m) \cdot\left|r_{\Lambda}(1)\right| \\
& +\left(e^{-\lambda_{N+1}}+1\right) C_{2} e^{-\left(\lambda_{1}+\cdots+\lambda_{N}\right)} M_{\Lambda_{2}}^{m} \cdot B_{\Lambda_{2}}(m) \cdot\left|r_{\Lambda_{2}}(1)\right|
\end{aligned}
$$

Now $r_{\left(\lambda_{1}, \ldots, \lambda_{N+1}\right)}(1)=\left(e^{\lambda_{N+1}}-1\right) r_{\left(\lambda_{1}, \ldots, \lambda_{N}\right)}(1)$ and $\left|\lambda_{N+1}\right| \leqslant M_{\Lambda}$, and $M_{\Lambda_{2}}^{m} \leqslant M_{\Lambda}^{m}$. Thus

$$
\left|\frac{d^{m+1}}{d x^{m+1}} Q_{\Lambda}(x)\right| \leqslant e^{-\left(\lambda_{1}+\cdots+\lambda_{N+1}\right)}\left|r_{\Lambda}(1)\right| \cdot M_{\Lambda}^{m+1} \cdot C_{\Lambda},
$$

where

$$
C_{\Lambda}=\left(C_{1} B_{\Lambda}(m)+C_{2} \frac{1}{M_{\Lambda}} B_{\Lambda_{2}}(m) \frac{\left(e^{-\lambda_{N+1}}+1\right) e^{\lambda_{N+1}}}{\left|e^{\lambda_{N+1}}-1\right|}\right)
$$

Further we have the trivial estimate $B_{\Lambda}(m) \leqslant B_{\Lambda}(m+1)$ and

$$
B_{\Lambda_{2}}(m)=\sum_{k=1}^{m+1} \max _{0 \leqslant x \leqslant 1}\left|M_{\Lambda}^{-(k-1)} A_{\left(\lambda_{1}, \ldots, \lambda_{N+1-k}\right)}(x, 1)\right| \leqslant M_{\Lambda} B_{\Lambda}(m+1)
$$

The function $x \longmapsto\left|(x+1)(x-1)^{-1}\right|$ is bounded on $\mathbb{R} \backslash[1-\delta, 1+\delta]$. Since $\left|e^{\lambda_{j}}-1\right| \geqslant \delta$ for all $j=1, \ldots, N+1$, we infer $C_{\Lambda} \leqslant C_{3} B_{\Lambda}(m+1)$ where C_{3} depends only on N and δ. The proof is complete.

3.3. Symmetry properties

Let $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{N+1}\right)$ and define $-\Lambda=\left(-\lambda_{1}, \ldots,-\lambda_{N+1}\right)$. For all $x \in \mathbb{R}$ and $\lambda \notin$ $e^{\Lambda} \cup e^{-\Lambda} \cup\{0\}$ the following identity (see [17, p. 213]):

$$
\begin{equation*}
A_{\Lambda}\left(1-x, \frac{1}{\lambda}\right)=(-1)^{N+1} \lambda \cdot A_{-\Lambda}(x, \lambda) \tag{20}
\end{equation*}
$$

follows by a direct computation. As in [11] we call Λ nearly symmetric if there exists $c \in \mathbb{R}$ and a permutation π of the set $\{1, \ldots, N+1\}$ such that $-\lambda_{j}=c+\lambda_{\pi(j)}$ for $j=1, \ldots, N+1$, or shortly $-\Lambda=c+\Lambda$. In the case $c=0$ we call Λ symmetric. Note that for $j \in\{1, \ldots, N+1\}$
with $\pi(j)=j$ one obtains that $-c=\lambda_{j}+\lambda_{\pi(j)}=2 \lambda_{j}$ and therefore $\lambda_{j}=-\frac{1}{2} c$. It follows that

$$
\begin{equation*}
\lambda_{1}+\cdots+\lambda_{N+1}=-\frac{1}{2}(N+1) c \tag{21}
\end{equation*}
$$

since $\lambda_{j}+\lambda_{\pi(j)}=-c$ for $j=1, \ldots, N+1$. A simple computation shows that for all $x \in \mathbb{R}$ and $\lambda \notin e^{\Lambda} \cup e^{-\Lambda} \cup\{0\}$

$$
\begin{equation*}
A_{-\Lambda}(x, \lambda)=e^{(x-1) c} A_{\Lambda}\left(x, \lambda e^{-c}\right) \tag{22}
\end{equation*}
$$

Combining Equation (20) and (22) one obtains
Proposition 7. Let Λ be nearly symmetric with respect to $c \in \mathbb{R}$. For all $\lambda \notin e^{\Lambda} \cup e^{-\Lambda} \cup\{0\}$ and all $x \in \mathbb{R}$ the following equality:

$$
\begin{equation*}
A_{\Lambda}\left(1-x, \frac{1}{\lambda}\right)=(-1)^{N+1} \lambda e^{(x-1) c} A_{\Lambda}\left(x, \lambda e^{-c}\right) \tag{23}
\end{equation*}
$$

holds.
Similar computations lead to the following result (cf. Proposition 7 in [11]):
Proposition 8. Let Λ be nearly symmetric with respect to $c \in \mathbb{R}$. Then the polynomial $P_{\Lambda}(\lambda)$ defined in (13) is given by

$$
\begin{equation*}
P_{\Lambda}(\lambda)=(-1)^{N} \lambda e^{N c} \cdot \Pi_{\Lambda}\left(0, \lambda e^{-c}\right) \tag{24}
\end{equation*}
$$

4. Estimate of the function $A_{\Lambda}(x, \lambda)$

In this section we will give an estimate of the asymptotic behavior of the function $A_{\Lambda(k)}(x, \lambda)$ for $k \rightarrow \infty$ and $0 \leqslant x \leqslant 1$. This estimate will be used to prove the existence of an interpolation polyspline for the case that $\Lambda=\Lambda(k)$ is of the form (4).

Assume that for each $k \in \mathbb{N}_{0}$ the vector $\Lambda=\Lambda(k)=\left\{\lambda_{1}(k), \ldots, \lambda_{N+1}(k)\right\}$ is of the following form: there exists $r \in\{1, \ldots, N+1\}$ (independent of $k \in \mathbb{N}_{0}$), pairwise different real numbers C_{1}, \ldots, C_{r}, and pairwise different numbers C_{r+1}, \ldots, C_{N+1}, such that for all $k \in \mathbb{N}_{0}$ we have the equalities

$$
\lambda_{j}=\lambda_{j}(k)= \begin{cases}-k+C_{j} & \text { for } j=1, \ldots, r \tag{25}\\ k+C_{j} & \text { for } j=r+1, \ldots, N+1\end{cases}
$$

Then for large k all $\lambda_{j}(k)$ are pairwise different for $j=1, \ldots, N+1$, consequently

$$
\begin{equation*}
A_{\Lambda(k)}(x, \lambda)=\sum_{j=1}^{N+1} \frac{1}{q_{\Lambda(k)}^{\prime}\left(\lambda_{j}(k)\right)} \frac{e^{\lambda_{j}(k) x}}{e^{\lambda_{j}(k)}-\lambda}, \tag{26}
\end{equation*}
$$

where $q_{\Lambda(k)}^{\prime}$ is the derivative of $q_{\Lambda(k)}$. Let us split $A_{\Lambda(k)}(x, \lambda)$ into a sum of two functions

$$
\begin{aligned}
& c_{k}(x, \lambda)=\sum_{j=1}^{r} \frac{1}{q_{\Lambda}^{\prime}\left(\lambda_{j}(k)\right)} \frac{e^{\lambda_{j}(k) x}}{e^{\lambda_{j}}-\lambda}, \\
& d_{k}(x, \lambda)=\sum_{j=r+1}^{N+1} \frac{1}{q_{\Lambda}^{\prime}\left(\lambda_{j}(k)\right)} \frac{e^{\lambda_{j}(x) x}}{e^{\lambda_{j}}-\lambda} .
\end{aligned}
$$

Let K be a compact subset of the complex plane such that $0 \notin K$ and let δ be a positive number. Then it is easy to see that the sequence $\left(d_{k}(x, \lambda)\right)_{k \in \mathbb{N}_{0}}$ with $\lambda \in K$ and $0 \leqslant x \leqslant 1-\delta$ is of uniform exponential decay in the following sense: there exists a polynomial P and $\varepsilon>0$ such that $\left|d_{k}(x, \lambda)\right| \leqslant|P(k)| \cdot e^{-\varepsilon \cdot k}$ for all $k \in \mathbb{N}_{0}$, all $\lambda \in K$, and all $0 \leqslant x \leqslant 1-\delta$.

Let us define

$$
b_{k}(x)=\sum_{j=1}^{r} \frac{e^{\lambda_{j}(k) x}}{q_{\Lambda}^{\prime}\left(\lambda_{j}(k)\right)}
$$

The following simple result tells us that the asymptotic of $\lambda A_{\Lambda(k)}(x, \lambda)$ for $k \rightarrow \infty$ is the same as of $b_{k}(x)$.

Proposition 9. Define $E(k, \lambda):=\prod_{l=1}^{r}\left(e^{\lambda_{l}(k)}-\lambda\right)$ and let K be a compact subset of the complex plane not containing 0 and let $0<\delta<1$. Then we can write

$$
\begin{equation*}
\lambda A_{\Lambda}(x, \lambda)=\frac{(-\lambda)^{r}}{E(k, \lambda)} b_{k}(x)+\lambda f_{k}(x, \lambda) \tag{27}
\end{equation*}
$$

where $f_{k}(x, \lambda)$ is of uniform exponential decay on $[0,1-\delta]$ and $E(k, \lambda)$ converges uniformly on K to $(-\lambda)^{r} \neq 0$.

Proof. Define $E_{j}(k, \lambda):=\prod_{l=1, l \neq j}^{r}\left(e^{\lambda_{l}(k)}-\lambda\right)$. Then $E_{j}(k, \lambda)$ is a sum of sequences of uniform exponential decay and the constant $(-\lambda)^{r-1}$. It is easy to see that

$$
e_{k}(x, \lambda):=\left(\sum_{j=1}^{r} \frac{e^{\lambda_{j}(k) x}}{q_{\Lambda}^{\prime}\left(\lambda_{j}(k)\right)} E_{j}(k, \lambda)\right)-(-\lambda)^{r-1} b_{k}(x)
$$

is of uniform exponential decay. Thus

$$
\begin{equation*}
f_{k}(x, \lambda):=\frac{e_{k}(x, \lambda)}{E(k, \lambda)}+d_{k}(x, \lambda)=A_{\Lambda}(x, \lambda)-\frac{(-\lambda)^{r-1}}{E(k, l)} b_{k}(x) \tag{28}
\end{equation*}
$$

is of uniform exponential decay.
Theorem 10. Let $\Lambda(k)$ be as in (25) and let K be a compact subset of the complex plane with $0 \notin K$. Then for each $\delta>0$ there exists a constant $D>0$ and a natural number k_{0} such that for all $k \geqslant k_{0}$, all $\lambda \in K$, and all $0 \leqslant x \leqslant 1-\delta$ the following estimate:

$$
\begin{equation*}
\left|A_{\Lambda(k)}(x, \lambda)\right| \leqslant D \frac{1}{k^{N}} \tag{29}
\end{equation*}
$$

holds. If there exists $c \in \mathbb{R}$ such that $\Lambda(k)$ is nearly symmetric with respect to c for all $k \geqslant k_{0}$ then the inequality is valid for all $0 \leqslant x \leqslant 1$.

Proof. We may assume that K is disjoint with $e^{\Lambda(k)}$ for large k. Let $\gamma(t)=e^{i t}$ for $t \in[0,2 \pi]$ and define $\Gamma_{k}(t):=-k+k \gamma(t)$. Let $k_{0} \in \mathbb{N}_{0}$ be so large that $\left|C_{j}\right|<\frac{1}{2} k_{0}$ for all $j=$ $1, \ldots, N+1$. Then for all $k \geqslant k_{0}$ the curve Γ_{k} surrounds $\lambda_{1}, \ldots, \lambda_{r}$ but not $\lambda_{r+1}, \ldots, \lambda_{N+1}$.

By Cauchy's Theorem

$$
\begin{equation*}
b_{k}(x)=\sum_{j=1}^{r} \frac{e^{\lambda_{j} x}}{q_{\Lambda}^{\prime}\left(\lambda_{j}\right)}=\frac{1}{2 \pi i} \int_{\Gamma_{k}} \frac{e^{z x}}{q_{\Lambda}(z)} d z \tag{30}
\end{equation*}
$$

Note that $\left|\lambda_{j}-z\right| \geqslant k-\frac{1}{2} k_{0} \geqslant \frac{1}{2} k$ for all z on the path Γ_{k} and for all $j=1, \ldots, N+1$. Clearly $\left|e^{z x}\right| \leqslant e^{x \operatorname{Re}(z)}$ (assuming $0 \leqslant x \leqslant 1$) is bounded for $z \in \Gamma_{k}$. Hence the standard estimate for line integrals gives for a suitable constant $M>0$ the inequality

$$
\left|b_{k}(x)\right| \leqslant M \frac{1}{k^{N+1}} k
$$

for all $0 \leqslant x \leqslant 1$ and $k \geqslant k_{0}$. By (28) we have uniform exponential decay for $\left(\lambda f_{k}(x, \lambda)\right)_{k \in \mathbb{N}_{0}}$, i.e. there exists a polynomial P and $\varepsilon>0$ such that $\left|\lambda f_{k}(x, \lambda)\right| \leqslant|P(k)| \cdot e^{-\varepsilon \cdot k}$ for all $k \in \mathbb{N}_{0}$, all $0 \leqslant x \leqslant 1-\delta$, and all $\lambda \in K$. Since $\frac{(-\lambda)^{r}}{E(k, \lambda)}$ converges uniformly to 1 it follows that for large k

$$
\left|\lambda A_{\Lambda}(x, \lambda)\right| \leqslant\left|\frac{(-\lambda)^{r}}{E(k, \lambda)} b_{k}(x)\right|+\left|\lambda f_{k}(x, \lambda)\right| \leqslant 2 M \frac{1}{k^{N}}+|P(k)| \cdot e^{-\varepsilon \cdot k}
$$

and (29) is proven for $0 \leqslant x \leqslant 1-\delta$.
For the second statement let $K_{1}:=K \cup\left\{1 / \lambda e^{c}: \lambda \in K\right\}$ and let $\delta=\frac{1}{4}$. Then there exists a constant $D>0$ such that $\left|A_{\Lambda(k)}(x, \mu)\right| \leqslant D \frac{1}{k^{N}}$ for all $0 \leqslant x \leqslant 1-\delta$ and for all $\mu \in K_{1}$. Let now $\frac{1}{2} \leqslant y \leqslant 1$ and define $x=1-y$. By Equation (23), (replace λ by λe^{c} and x by y and note that $N+1=2 p$)

$$
A_{\Lambda}(y, \lambda)=\frac{1}{\lambda e^{c}} e^{-(y-1) c} A_{\Lambda}\left(1-y, \frac{1}{\lambda e^{c}}\right)=\frac{1}{\lambda e^{c}} e^{x c} A_{\Lambda}\left(x, \frac{1}{\lambda e^{c}}\right)
$$

Hence $\left|A_{\Lambda}(y, \lambda)\right| \leqslant D_{2} D \frac{1}{k^{N}}$ for all $\frac{1}{2} \leqslant y \leqslant 1$ and the proof is complete.
Theorem 11. Let $\Lambda(k)$ be as in (25) and let K be a compact subset of the complex plane with $0 \notin K$. If $r<N+1$ then there exist constants $C, D>0$ and a natural number k_{0} such that for all $k \geqslant k_{0}$ and all $\lambda \in K$:

$$
\begin{equation*}
C \frac{1}{k^{N}} \leqslant\left|A_{\Lambda(k)}(0, \lambda)\right| \leqslant D \frac{1}{k^{N}} \tag{31}
\end{equation*}
$$

Further the following inequality holds for all $\lambda \in(-\infty, 0) \cap K$ and all $k \geqslant k_{0}$;

$$
\begin{equation*}
(-1)^{N+r} A_{\Lambda(k)}(0, \lambda)>0 \tag{32}
\end{equation*}
$$

Proof. Note that by (30)

$$
\begin{equation*}
k^{N} b_{k}(x)=\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{e^{-k x(1-\gamma(t))} \cdot \gamma^{\prime}(t)}{\prod_{j=1}^{r}\left(\gamma(t)-\frac{C_{j}}{k}\right) \prod_{j=r+1}^{N+1}\left(-2+\gamma(t)-\frac{C_{j}}{k}\right)} d t \tag{33}
\end{equation*}
$$

Clearly the denominator of the integrand converges to $(\gamma(t))^{r}(\gamma(t)-2)^{N+1-r}$. For $x=0$ the nominator is trivially convergent and hence we see that $k^{N} b_{k}(0)$ converges to

$$
d_{r}:=\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{z^{r}(z-2)^{N+1-r}} d z .
$$

Since γ surrounds $z=0$ but not $z=2$ this value can be computed by residue theory (see e.g. Proposition 2.4 in [6, p. 113]) and we obtain

$$
d_{r}=\frac{(-1)^{r-1+N}}{(r-1)!} 2^{N}(N+1-r) \ldots(N-1) .
$$

It follows that there exist a constant $C>0$ and an integer k_{0} such that $(-1)^{r-1+N} b_{k}(0) \geqslant$ $C \frac{1}{k^{N}}$ for all $k \geqslant k_{0}$:

Assume now that $K \subset(-\infty, 0)$. Since for $k \longrightarrow \infty$ we have $\frac{(-\lambda)^{r}}{E(k, \lambda)} \longrightarrow 1$ uniformly on K, there exists an integer k_{1} such that for all $k \geqslant k_{1}$ and all $\lambda \in K$:

$$
\frac{(-\lambda)^{r}}{E(k, \lambda)}(-1)^{r-1+N} b_{k}(0) \geqslant \frac{C}{2} \frac{1}{k^{N}}>0 .
$$

Since the sequence $\left(\lambda f_{k}(0, \lambda)\right)_{k \in \mathbb{N}_{0}}$ is of uniform exponential decay there exists a polynomial P and a number $\varepsilon>0$ such that $\left|\lambda f_{k}(0, \lambda)\right| \leqslant|P(k)| \cdot e^{-\varepsilon \cdot k}$ for all $k \in \mathbb{N}_{0}$ and for all $\lambda \in K$. Then by (27) the following inequalities hold:

$$
\begin{aligned}
(-1)^{r-1+N} \lambda A_{\Lambda}(0, \lambda) & \geqslant \frac{(-\lambda)^{r}}{E(k, \lambda)}(-1)^{r-1+N} b_{k}(0)-\left|\lambda f_{k}(0, \lambda)\right| \\
& \geqslant \frac{C}{2} \frac{1}{k^{N}}-|P(k)| \cdot e^{-\varepsilon \cdot k} \geqslant \frac{1}{4} \frac{C}{k^{N}}
\end{aligned}
$$

for all sufficiently large k and for all $\lambda \in K$. Since the set K contains only negative numbers we obtain estimate (32) for all sufficiently large k.

Now assume that K is a compact subset in the complex plane \mathbb{C}. Then similar arguments as above show that for some $k_{1} \in \mathbb{N}_{0}$ the inequality $\left|\lambda A_{\Lambda}(0, \lambda)\right| \geqslant \frac{1}{4} \frac{C}{k^{N}}$ holds for all $\lambda \in K$, and for all $k \geqslant k_{1}$.

5. Uniform estimates of fundamental L-splines

In the rest of the paper we will assume that $\Lambda(k)$ is given by (4). We write $\lambda_{j}(k)=-k+C_{j}$ for $j=1, \ldots, p$ with

$$
C_{1}=2-n, C_{2}=4-n, \ldots, C_{p}=2 p-n
$$

and $\lambda_{j}(k)=k+C_{j}$ for $j=p+1, \ldots, 2 p$ with

$$
C_{p+1}=0, C_{p+2}=2, \ldots, C_{2 p}=2 p-2
$$

Hence $N+1=2 p$ and clearly $\Lambda(k)$ is nearly symmetric with respect to $c=n-2 p$ where $n \in \mathbb{N}_{0}$ is the dimension of the underlying space \mathbb{R}^{n}.

Theorem 12. Let $\Lambda(k)$ be as in (4) and let K be a compact subset of the complex plane with $0 \notin K$. Then there exist a constant $M>0$ and an integer k_{0} such that $P_{\Lambda(k)}(\lambda) \neq 0$ for all $k \geqslant k_{0}$ and for all $\lambda \in K$; further for all $k \geqslant k_{0}$:

$$
\begin{equation*}
C(k):=\max _{x \in[0,1]} Q_{\Lambda(k)}(x) \cdot \max _{\lambda \in K} \frac{1}{\left|P_{\Lambda(k)}(\lambda)\right|} \leqslant M . \tag{34}
\end{equation*}
$$

More generally, for every $m=0, \ldots, 2 p-2$ there exist a constant $M_{1}>0$ and an integer k_{1} such that for all $\lambda \in K$ and for all $k \geqslant k_{1}$:

$$
\begin{equation*}
C_{m}(k):=\max _{x \in[0,1]}\left|\frac{d^{m}}{d x^{m}} Q_{\Lambda(k)}(x)\right| \cdot \max _{\lambda \in K} \frac{1}{\left|P_{\Lambda(k)}(\lambda)\right|} \leqslant M_{1} k^{m} . \tag{35}
\end{equation*}
$$

Proof. Using $N+1=2 p$ and $c=n-2 p$ Proposition 8 yields

$$
\begin{equation*}
P_{\Lambda(k)}(\lambda)=(-1) \lambda e^{N c} A_{\Lambda(k)}\left(0, \lambda e^{-c}\right) \cdot r_{\Lambda(k)}\left(\lambda e^{-c}\right), \tag{36}
\end{equation*}
$$

where $r_{\Lambda(k)}(\lambda)=\prod_{j=1}^{2 p}\left(e^{\lambda_{j}(k)}-\lambda\right)$. By Theorem 11 applied to the compact set $e^{-c} K:=\left\{e^{-c} \lambda\right.$: $\lambda \in K\}$ there exists $C>0$ and $k_{0} \in \mathbb{N}_{0}$ such that $C \leqslant\left|A_{\Lambda(k)}\left(0, \lambda e^{-c}\right)\right| \cdot k^{2 p-1}$ for all $\lambda \in K$ and for all $k \geqslant k_{0}$. Thus by (36) $P_{\Lambda(k)}(\lambda) \neq 0$ for all $\lambda \in K$ and for all $k \geqslant k_{0}$ and the first statement is proven. Furthermore, we have obtained the estimate

$$
\frac{1}{\left|P_{\Lambda(k)}(\lambda)\right|} \leqslant \frac{e^{-N c}}{C|\lambda|} k^{2 p-1} \frac{1}{r_{\Lambda(k)}\left(\lambda e^{-c}\right)} .
$$

In order to prove (34) we apply Theorem 6 with $m=0$, and obtain

$$
\left|Q_{\Lambda(k)}(x)\right| \leqslant C e^{-\left(\lambda_{1}+\cdots+\lambda_{N+1}\right)} \max _{0 \leqslant y \leqslant 1}\left|A_{\Lambda(k)}(y, 1)\right| \cdot\left|r_{\Lambda(k)}(1)\right| .
$$

Theorem 10 shows that there exists $D_{1}>0$ such that

$$
\max _{x \in[0,1]} Q_{\Lambda(k)}(x) \leqslant D_{1} e^{p(n-2 p)} \frac{1}{k^{2 p-1}}\left|r_{\Lambda(k)}(1)\right| .
$$

Hence we obtain for a suitable constant D_{2} (note that $0 \notin K$) the inequality

$$
C(k) \leqslant D_{2}\left|r_{\Lambda(k)}(1)\right| \max _{\lambda \in K} \frac{1}{\left|r_{\Lambda(k)}\left(\lambda e^{-c}\right)\right|}
$$

The proof is accomplished by the fact that

$$
\frac{r_{\Lambda(k)}(1)}{r_{\Lambda(k)}\left(\lambda e^{-c}\right)}=\frac{\prod_{k=1}^{p}\left(e^{-k+C_{j}}-1\right) \prod_{k=p+1}^{2 p}\left(e^{k+C_{j}}-1\right)}{\prod_{k=1}^{p}\left(e^{-k+C_{j}}-\lambda e^{-c}\right) \prod_{k=p+1}^{2 p}\left(e^{k+C_{j}}-\lambda e^{-c}\right)}
$$

converges uniformly for $k \rightarrow \infty$ to $\frac{1}{\left(\lambda e^{-c}\right)^{p}}$. Estimate (35) follows in the same way using again Theorems 6 and 10.

For the proof of our main result we need the following proposition which establishes an uniform estimate of the type (12) of all fundamental splines for the operators L generated by the vectors $\Lambda(k)$.

Proposition 13. For every $k \in \mathbb{N}_{0}$ let Λ (k) be as in (4). Then there exists a fundamental L-spline $L_{\Lambda(k)}$ with respect to the operator $M_{\Lambda(k)}$. Further there exist constants $M>0$ and $\varepsilon>0$ such that for all $k \in \mathbb{N}_{0}$ and all $v \in \mathbb{R}$ the following estimate holds:

$$
\begin{equation*}
\left|L_{\Lambda(k)}(v)\right| \leqslant M e^{-\varepsilon|v|} \tag{37}
\end{equation*}
$$

Proof. At first we show that $A_{\Lambda(k)}(0,-1) \neq 0$ for all $k \in \mathbb{N}_{0}$. The integral

$$
\begin{equation*}
A_{\Lambda(k)}(0,-1)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{1}{q_{\Lambda(k)}(z)} \frac{1}{e^{z}+1} d z \tag{38}
\end{equation*}
$$

can be computed by residue theory and it reduces to a rational expression which has a non-zero denominator. For simplicity let us consider the case when the constants $\lambda_{j}(k)$ are pairwise distinct. Then

$$
A_{\Lambda(k)}(0,-1)=\sum_{j=1}^{2 p} \frac{1}{q_{\Lambda(k)}^{\prime}\left(\lambda_{j}(k)\right)} \frac{1}{e^{\lambda_{j}(k)}+1}
$$

Obviously, $q_{\Lambda(k)}^{\prime}\left(\lambda_{j}(k)\right)$ are integers. Let us assume that $A_{\Lambda(k)}(0,-1)=0$. After multiplying by $\prod_{j=1}^{2 p}\left(e^{\lambda_{j}(k)}+1\right)$ we arrive at an equation of the type

$$
\sum_{i=1}^{l} \beta_{i} e^{\rho_{i}}=0
$$

here β_{i} are non-zero rationals and ρ_{i} are integers obtained by sums of some of the constants $\lambda_{j}(k)$. Due to the special form of the constants $\lambda_{j}(k)$ provided in (4) at least one of the ρ_{i} is non-zero. Thus we may apply the classical theorem of Lindemann on transcendental numbers which states that the above equality is impossible, see e.g. [15, p. 213] or [3, p. 6]. It follows that $A_{\Lambda(k)}(0,-1) \neq 0$.

By Theorem 3 we can find for each $k \in \mathbb{N}_{0}$ a fundamental L-spline $L_{\Lambda(k)}: \mathbb{R} \rightarrow \mathbb{R}$. Hence, there exist constants M_{k} and ε_{k} such that for all $v \in \mathbb{R}$ holds

$$
\left|L_{\Lambda(k)}(v)\right| \leqslant M_{k} e^{-\varepsilon_{k}|v|}
$$

We have to show that the constants M_{k} can be chosen as a bounded sequence, and similarly that $\varepsilon_{k} \geqslant \varepsilon$ for all $k \in \mathbb{N}_{0}$. Let $0<\rho<1$ and put $K:=\{\lambda \in \mathbb{C}: \rho \leqslant|\lambda| \leqslant 1 / \rho\}$. Choose arbitrary ρ^{*} with $0<\rho^{*}<\rho$ and put $T:=\left\{\lambda \in \mathbb{C}: \rho^{*} \leqslant|\lambda| \leqslant 1 / \rho^{*}\right\}$. By Theorem 12 applied to the compact set T there exists $k_{0} \in \mathbb{N}_{0}$ such that

$$
P_{\Lambda(k)}(\lambda) \neq 0
$$

for all $\lambda \in T$ and for all $k \geqslant k_{0}$. Hence $P_{\Lambda(k)}$ is holomorphic on the open annulus given by the radii $R_{1}=\rho^{*}<1<1 / \rho^{*}=R_{2}$ for all $k \geqslant k_{0}$. Again by Theorem 12 applied to the compact set K there exist a constant $M^{*}>0$ and a natural number $k_{1} \geqslant k_{0}$ such that

$$
\begin{equation*}
C(k):=\max _{x \in[0,1]} Q_{\Lambda(k)}(x) \cdot \max _{\lambda \in K} \frac{1}{\left|P_{\Lambda(k)}(\lambda)\right|} \leqslant M^{*} \tag{39}
\end{equation*}
$$

for all $k \geqslant k_{1}$. Apply now Proposition 5 with respect to all sets $\Lambda(k)$ with $k \geqslant k_{1}$. It follows that there exists a constant $G(\rho)$ (independent of k) such that the fundamental L-splines $L_{\Lambda(k)}$ for $k \geqslant k_{1}$ can be estimated by

$$
\left|L_{\Lambda(k)}(v)\right| \leqslant G(\rho) C(k) e^{-\varepsilon^{*}|v|} \leqslant G(\rho) M^{*} e^{-\varepsilon^{*}|v|},
$$

where $\varepsilon^{*}:=-\log \rho$. Finally after putting $M:=\max \left\{M^{*}, M_{0}, \ldots, M_{k_{1}-1}\right\}$ and $\varepsilon:=\min \left\{\varepsilon^{*}, \varepsilon_{0}, \ldots, \varepsilon_{k_{1}-1}\right\}$ the proof is complete.

6. The main result

At first we need some notations: assume that the function $f: \mathbb{S}^{n-1} \rightarrow \mathbb{R}$ be square-integrable with respect to the surface measure $d \theta$ on \mathbb{S}^{n-1} and define the usual scalar product

$$
\langle f, g\rangle_{L^{2}\left(\mathbb{S}^{n-1}\right)}=\int_{\mathbb{S}^{n-1}} f(\theta) \overline{g(\theta)} d \theta
$$

Recall that $Y_{k, l}(\theta)$, for $k \in \mathbb{N}_{0}, l=1, \ldots, a_{k}$ denotes an orthonormal basis of the space \mathcal{H}_{k} of all spherical harmonics with respect to $d \theta$. For all $k \in \mathbb{N}_{0}$, and $l=1, \ldots, a_{k}$ the Fourier-Laplace coefficients of f are given by

$$
f_{k, l}:=\int_{\mathbb{S}^{n-1}} f(\theta) Y_{k, l}(\theta) d \theta
$$

By [23, Corollary 2.3] every square-integrable function f can be expanded into a Fourier-Laplace series given by

$$
\begin{equation*}
f(\theta)=\sum_{k=0}^{\infty} \sum_{l=1}^{a_{k}} f_{k, l} \cdot Y_{k, l}(\theta) \tag{40}
\end{equation*}
$$

where convergence is understood in $L_{2}\left(\mathbb{S}^{n-1}\right)$ with the norm

$$
\|f\|_{L_{2}\left(\mathbb{S}^{n-1}\right)}=\sqrt{\langle f, f\rangle_{L_{2}\left(\mathbb{S}^{n-1}\right)}} .
$$

For every $f \in L_{2}\left(\mathbb{S}^{n-1}\right)$ define

$$
\begin{equation*}
\|f\|_{s}:=\sum_{k=0}^{\infty} \sum_{l=1}^{a_{k}}\left|f_{k, l}\right| \cdot(1+k)^{s} . \tag{41}
\end{equation*}
$$

The subspace of all $f \in L_{2}\left(\mathbb{S}^{n-1}\right)$ with $\|f\|_{s}<\infty$ is denoted by $H^{s, 1}\left(\mathbb{S}^{n-1}\right)$, see [1].
By [21], for all $Y_{k} \in \mathcal{H}_{k}$ we have the inequality

$$
\left|Y_{k}(\theta)\right| \leqslant K k^{(n / 2)-1}\left\|Y_{k}(\theta)\right\|_{L_{2}\left(\mathbb{S}^{n-1}\right)} \quad \text { for } \theta \in \mathbb{S}^{n-1}
$$

Since $\left\|Y_{k, l}(\theta)\right\|_{L_{2}\left(\mathbb{S}^{n-1}\right)}=1$ we obtain the estimate

$$
\begin{equation*}
\sum_{k=0}^{\infty} \sum_{l=1}^{a_{k}}\left|f_{k, l}\right|\left|Y_{k, l}(\theta)\right| \leqslant K \sum_{k=0}^{\infty} \sum_{l=1}^{a_{k}}\left|f_{k, l}\right|(1+k)^{\frac{n}{2}-1}=K\|f\|_{\frac{n}{2}-1} \tag{42}
\end{equation*}
$$

It follows that a function $f \in H^{\frac{n}{2}-1,1}\left(\mathbb{S}^{n-1}\right)$ possesses an absolutely uniformly convergent Fourier-Laplace series.

Using some standard techniques (see e.g. [8]) one can prove the following criterion:
Proposition 14. Assume that $f: \mathbb{S}^{n-1} \rightarrow \mathbb{R}$ is a $2 q$-continuously differentiable function where $2 q \geqslant 2(p-1)+2\left[\frac{n}{2}\right]$. Then $f \in H^{s, 1}\left(\mathbb{S}^{n-1}\right)$ for $s=2(p-1)+(n / 2)-1$.

6.1. Construction of fundamental polysplines

As in the one-dimensional case we show at first the existence of "fundamental polysplines" in the following sense:

Definition 15. A fundamental polyspline $L_{f}: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}$ for the data function $f: \mathbb{S}^{n-1} \rightarrow \mathbb{C}$ is the polyspline of order p such that for each $j \in \mathbb{Z}$ the interpolation conditions

$$
\begin{align*}
& L_{f}\left(e^{j} \theta\right)=0 \quad \text { for all } j \neq 0 \text { and } \theta \in \mathbb{S}^{n-1} \\
& L_{f}\left(e^{j} \theta\right)=f(\theta) \text { for } j=0 \text { and all } \theta \in \mathbb{S}^{n-1} \tag{43}
\end{align*}
$$

hold, as well as the following growth condition:

$$
\begin{equation*}
\left|L_{f}(r \theta)\right| \leqslant M e^{-\varepsilon|\log r|} \quad \text { for all } r>0 \text { and } \theta \in \mathbb{S}^{n-1} \tag{44}
\end{equation*}
$$

The next result ensures the existence of fundamental polysplines for a large class of data functions.

Theorem 16. Let $s=s_{p, n}=2(p-1)+(n / 2)-1$. Then there exist constants $M>0$ and $\varepsilon>0$ with the following property: for each $f \in H^{s, 1}\left(\mathbb{S}^{n-1}\right)$ there exists a polyspline L_{f} of order p such that (43) holds and

$$
\begin{equation*}
\left|\frac{d^{m}}{d r^{m}} D^{\alpha} L_{f}(r \theta)\right| \leqslant M e^{-\varepsilon|\log r|}\|f\|_{s} \tag{45}
\end{equation*}
$$

for all $m \in \mathbb{N}_{0}$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n-1}\right) \in \mathbb{N}_{0}^{n-1}$ satisfying the condition $m+|\alpha| \leqslant 2 p-2$; here D^{α} denotes the differential operator

$$
D^{\alpha}:=\frac{\partial^{\alpha_{1}}}{\partial \theta_{1}^{\alpha_{1}}} \cdots \frac{\partial^{\alpha_{n-1}}}{\partial \theta_{n-1}^{\alpha_{n-1}}}
$$

Proof. Let $L_{\Lambda(k)}$ denote the fundamental cardinal L-spline with respect to the differential operator $M_{\Lambda(k)}$. Now using the Fourier-Laplace series of f we want to define a fundamental polyspline L_{f} by

$$
\begin{equation*}
L_{f}(r \theta):=\sum_{k=0}^{\infty} \sum_{l=1}^{a_{k}} f_{k, l} \cdot L_{\Lambda(k)}(\log r) \cdot Y_{k, l}(\theta) \tag{46}
\end{equation*}
$$

The series converges absolutely and uniformly since by (37) and (42) we have the estimate:

$$
\begin{equation*}
\left|L_{f}(r \theta)\right| \leqslant M e^{-\varepsilon|\log r|} \sum_{k=0}^{\infty} \sum_{l=1}^{a_{k}}\left|f_{k, l}\right|\left|Y_{k, l}(\theta)\right| \leqslant K\|f\|_{\frac{n}{2}-1} \tag{47}
\end{equation*}
$$

Furthermore L_{f} is polyharmonic on each annulus $A\left(e^{j}, e^{j+1}\right)$ since each summand $L_{\Lambda(k)}$ $(\log r) \cdot Y_{k, l}(\theta)$ is according to the results in Section 2 polyharmonic of order p and the uniform limit of such functions is again polyharmonic of order p.

Since $L_{\Lambda(k)}(0)=1$ and $L_{\Lambda(k)}(j)=0$, for all $j \in \mathbb{Z}, j \neq 0$, we conclude that L_{f} interpolates the given data f, i.e. (43) holds.

We want to prove that the partial derivatives of $\theta \rightarrow L_{f}(r \theta)$ and $r \rightarrow L_{f}(r \theta)$ exist up to the order $2(p-1)$. It suffices to prove the uniform convergence of the series

$$
\begin{equation*}
\sum_{k=0}^{\infty} \sum_{l=1}^{a_{k}} f_{k, l} \cdot \frac{d^{m}}{d r^{m}} L_{\Lambda(k)}(\log r) \cdot D^{\alpha} Y_{k, l}(\theta) \tag{48}
\end{equation*}
$$

for $m+|\alpha| \leqslant 2 p-2$. By formula (15), and Theorem 12, there exist constants $C>0$ and $\varepsilon>0$ and $k_{0} \in \mathbb{N}$ such that for all $k \geqslant k_{0}$ holds

$$
\left|\frac{d^{m}}{d r^{m}} L_{\Lambda(k)}(\log r)\right| \leqslant C k^{m} e^{-\varepsilon|\log r|}
$$

By [22], or [21], there exists a constant $K>0$ independent of k such that for all $Y_{k} \in \mathcal{H}_{k}$, and for all $\alpha \in \mathbb{N}_{0}$ with $|\alpha| \leqslant N:=2(p-1)-m$, the following estimate holds:

$$
\left|D^{\alpha} Y_{k}(\theta)\right| \leqslant K \cdot k^{(n / 2)-1+N}\left\|Y_{k}(\theta)\right\|_{L_{2}\left(\mathbb{S}^{n-1}\right)}
$$

Applying the last inequality to $Y_{k, l}(\theta)$ (note that $\left\|Y_{k, l}(\theta)\right\|_{L_{2}\left(\mathbb{S}^{n-1}\right)}=1$) we obtain that for all $\alpha \in \mathbb{N}_{0}^{n-1}$ with $|\alpha| \leqslant N:=2(p-1)-m:$

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \sum_{l=1}^{a_{k}}\left|f_{k, l} \cdot \frac{d^{m}}{d r^{m}} L_{\Lambda(k)}(\log r) \cdot D^{\alpha} Y_{k, l}(\theta)\right| \\
& \quad \leqslant C K e^{-\varepsilon|\log r|} \sum_{k=0}^{\infty} \sum_{l=1}^{a_{k}}\left|f_{k, l}\right| \cdot k^{m} \cdot k^{(n / 2)-1+N} \\
& \quad=C K e^{-\varepsilon|\log r|} \sum_{k=0}^{\infty} \sum_{l=1}^{a_{k}}\left|f_{k, l}\right| \cdot k^{2(p-1)} \cdot k^{(n / 2)-1}
\end{aligned}
$$

Since $\|f\|_{s_{p, n}}<\infty$ we conclude that $L_{f}(r \theta)$ is differentiable up to the order $2(p-1)$ and (45) holds.

6.2. Construction of interpolation polysplines

Now let us construct interpolation polysplines. Assume that d_{j} are data functions defined on the spheres $e^{j} \mathbb{S}^{n-1}$. Then we put $f_{j}(\theta):=d_{j}\left(e^{j} \theta\right)$, consequently f_{j} is a function on the sphere \mathbb{S}^{n-1}.

Theorem 17. Let $\gamma \geqslant 0$ and $s=s_{p, n}=2(p-1)+(n / 2)-1$ and $f_{j} \in H^{s, 1}\left(\mathbb{S}^{n-1}\right)$ for $j \in \mathbb{Z}$. Suppose that there exists a constant $C>0$ such that the inequality

$$
\begin{equation*}
\left\|f_{j}\right\|_{s} \leqslant C|j|^{\gamma}=C\left|\log e^{j}\right|^{\gamma} \tag{49}
\end{equation*}
$$

holds for all $j \in \mathbb{Z}$. Then there exists a polyspline $S: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}$ of order p such that

$$
S\left(e^{j} \theta\right)=f_{j}(\theta)=d_{j}\left(e^{j} \theta\right) \quad \text { for all } \theta \in \mathbb{S}^{n-1}
$$

holds for each $j \in \mathbb{Z}$, and there exists a constant $D>0$ such that for all $\theta \in \mathbb{S}^{n-1}$ and all $r>0$:

$$
|S(r \theta)| \leqslant D|\log r|^{\gamma}
$$

Proof. The following well-known fact can be found, e.g. in [18]: Let $\gamma \geqslant 0$ and $\varepsilon>0$. Then there exists $D(\varepsilon, \gamma)>0$ and $R_{0}>0$ such that for all $x \in \mathbb{R}$ with $|x| \geqslant R_{0}$ the following inequality holds:

$$
\begin{equation*}
\sum_{j=-\infty}^{\infty}|j|^{\gamma} e^{-\varepsilon|x-j|} \leqslant D(\varepsilon, \gamma)|x|^{\gamma} \tag{50}
\end{equation*}
$$

For each f_{j} we can define a fundamental polyspline $L_{f_{j}}$ as in Theorem 16. We define the interpolation polyspline by putting

$$
S(x):=\sum_{j=-\infty}^{\infty} L_{f_{j}}\left(x e^{-j}\right) .
$$

Estimate (45) yields $\left|L_{f_{j}}\left(x e^{-j}\right)\right| \leqslant M e^{-\varepsilon|\log | x e^{-j}| |}\left\|f_{j}\right\|_{s}$, hence by (49) and (50) it follows

$$
|S(x)| \leqslant \sum_{j=-\infty}^{\infty} M C e^{-\varepsilon|\log | x e^{-j} \|}|j|^{\gamma} \leqslant C M D(\varepsilon, \gamma)|\log | x| |^{\gamma}
$$

This shows that S is well-defined and since the convergence is locally uniform it is clear that S is continuous on $\mathbb{R}^{n} \backslash\{0\}$ and polyharmonic on the open annuli $A\left(e^{j}, e^{j+1}\right)$ for $j \in \mathbb{Z}$.

The differentiability of S up to order $2(p-1)$ follows from similar estimates using inequality (45). Then

$$
\sum_{j=-\infty}^{\infty}\left|\frac{d^{m}}{d r^{m}} D^{\alpha} L_{f_{j}}\left(r \theta e^{-j}\right)\right| \leqslant \sum_{j=-\infty}^{\infty} M e^{-\varepsilon\left|\log r e^{j}\right|}\left\|f_{j}\right\|_{s}
$$

This ends the proof.

7. Uniqueness of interpolation polysplines

In this section we will prove uniqueness of interpolation polysplines.
Theorem 18. Let $\gamma \geqslant 0$. Suppose $S_{1}, S_{2}: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{C}$ be polysplines of order p such that

$$
\left|S_{i}(r \theta)\right| \leqslant C\left(|\log r|^{\gamma}\right)
$$

for $i=1$, 2. If $S_{1}\left(e^{j} \theta\right)=S_{2}\left(e^{j} \theta\right)$ for all $j \in \mathbb{Z}$ and for all $\theta \in \mathbb{S}^{n-1}$ then $S_{1} \equiv S_{2}$.
Proof. Let us put $S:=S_{1}-S_{2}$. Let $S_{k, l}(\log r)$, with $v=\log r$, be the Fourier-Laplace coefficients of S as defined in (6). According to Theorem 2, $S_{k, l}(v)$ are cardinal L-splines with respect to the linear differential operator $M_{\Lambda(k)}$ and clearly $S_{k, l}(j)=0$ for all $j \in \mathbb{Z}$. Further, by the assumption of the Theorem we see that for all $v \in \mathbb{R}$ inequality

$$
\left|S_{k, l}(v)\right| \leqslant \int_{\mathbb{S}^{n-1}}\left|S\left(e^{v} \theta\right) Y_{k, l}(\theta)\right| d \theta \leqslant C_{k, l}\left|\log e^{v}\right|^{\gamma}=C_{k, l}|v|^{\gamma}
$$

holds with some constants $C_{k, l}>0$. Hence $S_{k, l}$ is a cardinal L-spline of polynomial growth. By the uniqueness for interpolation cardinal L-splines (see [16, p. 204] applied for $\alpha=0$) we infer that $S_{k, l} \equiv 0$. This implies $S \equiv 0$ and finishes the proof.

References

[1] R. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2] S. Axler, P. Bourdon, W. Ramey, Harmonic Function Theory, Springer, New York, 1992.
[3] A. Baker, Transcendental Number Theory, Cambridge University Press, Cambridge, 1975.
[4] A. Bejancu, O. Kounchev, H. Render, Cardinal interpolation with biharmonic polysplines on strips, in: Proceedings of the Fifth International Conference on Curves and Surfaces, 27 June-3 July, 2002, Nashboro Press, Saint-Malo, 2003.
[5] Ch. Chui, An Introduction to Wavelets, Academic Press, Boston, 1992.
[6] J.B. Conway, Functions of One Complex Variable, second ed., Springer, New York, 1978.
[7] N. Dyn, A. Ron, Recurrence relations for Tchebycheffian B-splines, J. Analyse Math. 51 (1988) 118-138.
[8] H. Kalf, On the expansion of a function in terms of spherical harmonics in arbitrary dimensions, Bull. Belg. Math. Soc. 2 (1995) 361-380.
[9] O.I. Kounchev, Minimizing the integral of the Laplacian of a function squared with prescribed values on interior boundaries-theory of polysplines, Trans. Amer. Math. Soc. 350 (1998) 2105-2128.
[10] O.I. Kounchev, Multivariate Polysplines. Applications to Numerical and Wavelet Analysis, Academic Press, London, San Diego, 2001.
[11] O. Kounchev, H. Render, Symmetry properties for cardinal L-splines with applications to polysplines, in: K. Kopotun, T. Lyche, M. Neamtu (Eds.), Trends Approximation Theory, Vanderbilt University Press, Nashville, TN, 2001, pp. 191-202.
[12] O. Kounchev, H. Render, Wavelet analysis of cardinal L-splines and construction of multivariate prewavelets, in: X. Chui, X. Charles et al. (Eds.), Approximation Theory X. Wavelets, Splines, and Applications, Vanderbilt University Press, Nashville, TN, 2002, pp. 333-353.
[13] O. Kounchev, H. Render, The approximation order of polysplines, Proc. Amer. Math. Soc. 132 (2004) 455-461.
[14] O. Kounchev, H. Render, Polyharmonic splines on grids $\mathbb{Z} \times a \mathbb{Z}^{n}$ and their limits, Math. Comp. 74 (2005) 1831-1841.
[15] K. Mahler, Lectures on Transcendental Numbers, Lecture Notes in Mathematics, vol. 546, Springer, Berlin, 1976.
[16] Ch. Micchelli, Oscillation matrices and cardinal spline interpolation, in: S. Karlin et al. (Eds.), Studies in Spline Functions and Approximation Theory, Academic Press, New York, 1976, pp. 163-202.
[17] Ch. Micchelli, Cardinal L-splines, in: S. Karlin et al. (Eds.), Studies in Spline Functions and Approximation Theory, Academic Press, New York, 1976, pp. 203-250.
[18] I.J. Schoenberg, Cardinal interpolation and spline functions, J. Approx. Theory 2 (1969) 167-206.
[19] I.J. Schoenberg, Cardinal Spline Interpolation, SIAM, Philadelphia, PA, 1973.
[20] I.J. Schoenberg, On Micchelli's theory of cardinal L-splines, in: S. Karlin et al. (Eds.), Studies in Spline Functions and Approximation Theory, Academic Press, New York, 1976, pp. 251-276.
[21] R. Seeley, Spherical Harmonics, Amer. Math. Monthly 73 (1966) 115-121.
[22] S.L. Sobolev, Cubature Formulas and Modern Analysis: An Introduction, Gordon and Breach Science Publishers, Montreux, 1992.
[23] E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 1971.

[^0]: * Corresponding author.

 E-mail addresses: kounchev@math.bas.bg (O. Kounchev), render@gmx.de (H. Render).
 ${ }^{1}$ Partially sponsored by the Fulbright Program during his stay at the University of Wisconsin-Madison.
 ${ }^{2}$ Supported by the Alexander von Humboldt-Foundation in the framework of the Feodor Lynen Program.

